日韩激情啪啪,国产福利片在线观看,国产欧美精品久久久 http://www.ahjfzs.com/fr/ Thu, 20 Nov 2025 03:10:14 +0000 fr-FR horaire 1 https://wordpress.org/?v=6.8.3 http://www.ahjfzs.com/wp-content/uploads/2024/04/cropped-logo-32x32.png SANDY TECHNOLOGY CO. http://www.ahjfzs.com/fr/ 32 32 L'impression 3D industrielle brise la glace en mer : de la fabrication intelligente chinoise à la fabrication mondiale http://www.ahjfzs.com/fr/news/gongye3ddayinchuhaipojucongzhongguozhizaodaoquanqiuzhizao/ Thu, 20 Nov 2025 03:10:06 +0000 http://www.ahjfzs.com/?p=2436 L'impression 3D chinoise prend le large avec des produits et des paradigmes, et promeut l'intégration mondiale des normes techniques et de l'écologie industrielle.

工業3D打印出海破局:從中國智造到全球制造最先出現在三帝科技股份有限公司。

]]>
Comment une imprimante 3D de qualité industrielle a imprimé un volant de vanne indispensable sur une plate-forme pétrolière et gazière en Norvège. Cette histoire nous parvient fréquemment des usines intelligentes du monde entier.

Fin 2025, un volant d'une pièce ma?tresse de l'équipement d'une plate-forme pétrolière et gazière norvégienne a été soudainement endommagé. Selon le modèle traditionnel, son remplacement aurait nécessité un cycle d'approvisionnement de 12 mois. Cette fois, cependant, les ingénieurs ont passé la commande via une plateforme numérique et, quelques jours plus tard, un volant en matériau PA12 imprimé à l'aide du système HP Multi Jet Fusion a été fabriqué par un prestataire de services local.

Il s'agit d'un réseau mondial de fabrication composé d'entreprises d'impression 3D industrielle.

Pendant ce temps, de l'autre c?té du globe, le matériel d'impression 3D de SANDI Technology est envoyé en Italie, en Turquie, en Espagne, en Corée du Sud et dans d'autres pays. Cette entreprise, qui se consacre depuis des dizaines d'années à l'impression 3D industrielle, a réalisé une percée sur le marché étranger, passant de presque zéro à 15% du chiffre d'affaires de l'entreprise en un an seulement.

Photo : Expédition d'équipements d'impression 3D de qualité industrielle de SANTI TECH(Source : SANTI TECHNOLOGY)



Comme l'a déclaré Xia Chunguang, cofondateur de Mofang Precision, "plus une pièce est précise, plus le co?t de son développement et de sa production de manière traditionnelle est élevé". C'est précisément le c?ur de la compétitivité des entreprises chinoises d'impression 3D industrielle à l'étranger - elles n'exportent pas seulement des produits, mais aussi un nouveau paradigme de fabrication.

01 Le parcours de l'industrie : du "laboratoire" à la "globalisation"

Le marché mondial de l'impression 3D conna?t une croissance explosive. Selon Mordor Intelligence, la taille du marché mondial de l'impression 3D devrait dépasser les 110 milliards de dollars d'ici 2030, avec un taux de croissance annuel moyen (TCAC) de plus de 36% au cours de la période 2025-2030.

Le paysage du marché régional est distinct : l'Amérique du Nord a représenté 41,681 TP3T des dépenses mondiales, tandis que l'Asie-Pacifique devrait se développer à un taux de croissance annuel moyen de 26,471 TP3T, ce qui en fait la région qui conna?t la croissance la plus rapide.

Dans cette vague de mondialisation, les entreprises chinoises d'impression 3D industrielle présentent une voie unique vers la mer.

L'expérience de MoFang Precision à l'étranger est assez légendaire. En 2019, MoFang Precision a présenté des équipements de fabrication additive avec une précision d'impression allant jusqu'à 2 microns lors d'une exposition industrielle aux états-Unis, ce qui a déclenché un mouvement de foule.


Figure : Prototypes de précision fabriqués par Mofang Precision (source : données internet)


Un ami étranger a vu l'échantillon d'impression, un genou à terre, l'a examiné de près et attentivement pendant un long moment. L'avancée en matière de précision a permis à Mofang Precision de s'ouvrir au marché des pays développés.

En seulement trois ans, MoFang Precision a créé des succursales aux états-Unis, au Japon, en Allemagne, au Royaume-Uni et dans d'autres pays. Après 4 ans de présence en mer, les produits sont exportés vers 35 pays et la proportion des ventes à l'étranger atteint 50%.

SANDI Technology a choisi une voie différente. En ma?trisant les quatre technologies industrielles d'impression 3D que sont le SLS (Selective Laser Sintering), le SLM (Selective Laser Melting), le 3DP (Sand Printing) et le BJ (Binder Jet), et en exportant son équipement, SANDI TECH a précisément ciblé le marché eurasien, où la demande de dentisterie numérique est forte et où le rapport qualité-prix est sensible.

Ses recettes à l'étranger sont passées de presque zéro à 15% $ en un an, réalisant ainsi une percée substantielle.

02 Exploration du chemin : trois voies maritimes, quatre styles de jeu mondiaux

Les voies maritimes empruntées par les entreprises chinoises d'impression 3D industrielle peuvent être classées en trois catégories distinctes, et le succès de SanDi Technology démontre l'efficacité d'un modèle hybride.

La première est la "conquête technologique".

Mofang Precision s'appuie sur sa propre technologie de "microstéréolithographie par projection de surface" pour réaliser une impression de détail de haute précision à 2 microns, avec des tolérances de l'ordre de +-10 microns. Cette avancée technologique fait de Mofang Precision la seule entreprise au monde à fournir avec succès des solutions de fabrication additive de haute précision.

L'innovation technologique est devenue le point d'appui qui leur permet de conquérir le marché mondial.

Figure : Carte des activités de R&D et de production des équipements de Mofang Precision (Source : site web officiel de Mofang Precision)



Le second est celui de la "perturbation des co?ts".

Grace à la consolidation de la cha?ne d'approvisionnement, Intelligent Pie a pu s'approvisionner en écrans d'affichage pour l'impression 3D à photopolymérisation à un prix nettement inférieur à celui du marché. En 2019, l'entreprise lancera la série "Mars", qui est le premier appareil du marché dans le segment des 300 dollars à combiner une précision d'impression de 2K.

Alors que le prix moyen des marques nationales se situait à l'époque autour de 500 dollars, les marques étrangères dépassaient les 1 000 dollars.

Figure : Imprimante 3D à photopolymérisation ELEGOO DLPMARS 4 DLP (Source : site web ELEGOO)



La troisième est la "mise en réseau écologique".

Certaines entreprises ont suivi le modèle de HP, qui consiste à créer un "réseau de fabrication additive" pour permettre une production locale et une réponse rapide en construisant un réseau mondial de fabrication et de service. Korall Engineering, avec des partenaires tels que HP, a réussi à imprimer et à livrer des pièces de rechange localement en quelques jours dans l'industrie du pétrole et du gaz.

Le quatrième est un "hybride technologie + fusions-acquisitions".

SANDI Technology a emprunté une voie unique combinant technologie et fusions et acquisitions. En 2025, SANDI Technology a acquis Shenzhen Shuanglong Dental Research Technology Co., Ltd, une société spécialisée dans les prothèses personnalisées haut de gamme. Cette opération permet non seulement à SANDI de bénéficier des canaux de distribution établis par Shuanglong Dental Research dans plus de 30 pays et régions du monde, tels que les Amériques, l'Europe, l'Australie, l'Asie du Sud-Est, etc., mais aussi de reprendre d'un seul coup toutes ses certifications internationales et ses ressources en matière de clientèle, réalisant ainsi le développement par bonds du processus d'expansion à l'étranger.

Figure : Pont en titane (Source : Shenzhen Shuanglong Dental Research)



03 Sortir de l'impasse : défis et réponses sur le chemin de la mer

Le chemin de l'impression 3D industrielle vers la mer n'est pas sans emb?ches, les entreprises doivent faire face à une série de défis.

Les barrières commerciales constituent le principal défi.

Dans le contexte de l'augmentation continue des droits de douane américains, les fabricants chinois d'imprimantes 3D de qualité industrielle sont confrontés à de multiples défis, tels que la hausse des co?ts d'exportation, la restructuration de la cha?ne d'approvisionnement et l'accès limité au marché.

Les goulets d'étranglement en matière de certification ne doivent pas non plus être ignorés.

"Le matériel de vol tel que les tuyères des turbines ou les soupapes des boosters doit se conformer à des tests rigoureux de résistance à la rupture et à la fatigue", rapporte Mordor Intelligence, "et les règles actuelles sont écrites pour l'usinage soustractif ; en conséquence, les pièces additives subissent des tests d'échantillonnage redondants, ce qui prolonge les calendriers de 18 mois. jusqu'à 18 mois."

à cet égard, grace à la fusion et à l'acquisition de Shuanglong Dental Research, SanDi Technology a obtenu la certification CE de l'Union européenne, la certification FDA des états-Unis et la certification des dispositifs médicaux de classe II de la Chine, ouvrant ainsi la voie à la commercialisation des produits sur le marché international.

Les risques liés à la propriété intellectuelle sont inhérents au territoire.

En tant qu'industrie à forte intensité technologique, les entreprises d'impression 3D sont confrontées à un environnement complexe en matière de propriété intellectuelle, en particulier sur les marchés matures d'Europe et des états-Unis.

Face à ces défis, les entreprises qui ont réussi à s'implanter à l'étranger ont adopté diverses stratégies d'adaptation.

La localisation de l'organisation de la cha?ne d'approvisionnement est un moyen efficace de faire face aux barrières commerciales. L'étude suggère que les entreprises chinoises peuvent optimiser l'allocation des capacités globales grace au modèle d'agencement distribué "centres de fabrication régionaux + unités de fabrication localisées".

SANDI a mis en ?uvre une gestion allégée dans tous les aspects de la production afin de garantir la fiabilité et la constance de la qualité des produits. En outre, l'entreprise a établi une coopération stratégique avec un certain nombre de fournisseurs internationaux de services logistiques de haute qualité afin de personnaliser des solutions de transport s?res et efficaces pour chaque commande, garantissant ainsi pleinement la ponctualité et l'intégrité de la production mondiale d'équipements.

L'internationalisation des normes techniques est la clé pour surmonter le goulot d'étranglement de la certification. La capacité d'innovation de Mofang Precision a été reconnue par le Prism Award, un prix faisant autorité dans l'industrie mondiale des technologies optoélectroniques. En mars 2021, Mofang Precision est devenue la première entreprise chinoise à remporter ce prix, devan?ant deux entreprises américaines bien connues.

La diversification des marchés est un choix stratégique qui permet de diversifier les risques. Intelligent Pie Europe et les états-Unis représentent 92%, mais vend également ses produits dans plus de 70 pays et régions du monde.

SANDI Technology, quant à elle, s'est implantée avec précision sur des marchés à forte croissance tels que la Turquie et l'Espagne. En Turquie, par exemple, l'industrie dentaire devrait atteindre 5 milliards de dollars américains en 2025, le tourisme dentaire représente une part de 70%, dont les commandes de matériel d'impression 3D pour prothèses dentaires ont augmenté d'une année sur l'autre pour atteindre 55%, ce qui représente une énorme opportunité de marché.



04 Stratégie future : du "produit à la mer" à la valeur à la mer

Alors que le marché mondial de l'impression 3D continue de m?rir, les entreprises chinoises améliorent leurs stratégies à l'étranger.

La stratégie de la cha?ne d'approvisionnement passe de l'exportation pure et simple au placement de capacités à l'échelle mondiale.

Les "réseaux de production régionalisés" et les "stratégies de localisation des technologies" sont devenus des moyens importants de répondre aux changements de l'environnement commercial mondial. Certaines grandes entreprises ont commencé à s'implanter stratégiquement dans des économies émergentes telles que l'Asie du Sud-Est, l'Europe centrale et orientale et l'Amérique latine.

L'évolution des technologies montre une tendance à la diversification.

Impression de haute précision de 2 microns sur le métal, et contr?le de la taille de la tolérance dans la gamme de +-10 microns, +-25 microns respectivement.

Certains des premiers équipements de SANDI Technology fonctionnent de manière continue et stable depuis plus de 20 ans, ce qui lui a valu un niveau de confiance très élevé sur le marché. Les quatre principales technologies d'impression 3D qu'elle ma?trise peuvent fournir l'assurance d'une technologie mature nécessaire pour répondre à des besoins de fabrication diversifiés.

L'expansion des marchés s'étend des pays développés aux marchés émergents.

L'Asie-Pacifique est devenue la région qui conna?t la croissance la plus rapide sur le marché mondial de l'impression 3D, la politique "Made in China 2025" du gouvernement chinois stimulant la croissance des entreprises locales.

Le modèle commercial a également évolué, passant de la vente d'un seul appareil à la diversification.

Certaines entreprises ont commencé à proposer des services d'abonnement "à l'heure d'impression" qui combinent la maintenance, l'étalonnage et le réapprovisionnement en poudre en une seule facture. Cette approche hybride brouille la frontière entre le matériel et les services, ce qui permet de lisser les flux de revenus pendant les cycles macroéconomiques.

05 Perspectives d'avenir : de "l'industrie manufacturière à l'outre-mer" à "l'outre-mer écologique".

La prochaine étape de l'impression 3D industrielle à l'étranger sera le passage de la production de produits à la construction d'un écosystème mondial de fabrication numérique.

Les cha?nes d'approvisionnement numériques deviennent une compétence essentielle.

L'approche de Korall Engineering annonce cette tendance : elle identifie les composants clés, modélise les systèmes modulaires et automatise la dérivation des variantes. Ces ensembles de données sont ensuite mis à la disposition de partenaires de fabrication certifiés via la plateforme Oktopus de Korall.

La transformation de la servitisation est devenue un point de croissance de la valeur.

Le marché des services d'impression 3D devrait dépasser le marché du matériel à un TCAC de 25,21% de 2025 à 2030.Les fabricants contractuels tels que Stratasys Direct Manufacturing, Materialise et Protolabs utilisent des réseaux multisites pour répartir les charges, permettre aux clients de réaliser des prototypes en dix jours et de recevoir des pièces conformes aux normes de production ISO-13485.

Les réseaux mondiaux de collaboration seront la forme ultime.

HP met en relation les exigences des pièces avec son réseau de partenaires par le biais de son programme Additive Manufacturing Network (réseau de fabrication additive). De même, Korall s'est associé à HP, Assembrix et Sparely pour mettre en ?uvre une série de travaux d'impression à distance sécurisés.

Dans une usine intelligente de Zhuhai, des dizaines d'imprimantes 3D granulaires de qualité industrielle fonctionnent en permanence. Elles impriment des pièces automobiles et des produits de consommation de différentes spécifications en fonction des commandes de clients d'Europe et d'Amérique du Nord.

Sur l'écran électronique de l'atelier, une carte de l'état de la production mondiale clignote en temps réel, indiquant les n?uds de fabrication répartis sur les continents.

Parallèlement, la liste des expéditions de SANDI continue de s'allonger avec des commandes en provenance d'Italie, de Turquie, d'Espagne et de Corée du Sud, témoignant de la transformation de l'impression 3D industrielle chinoise, qui passe d'une situation de rattrapage technologique à une position de leader mondial.



Zong Guisheng, fondateur de SANDI Technology, estime que des percées technologiques à l'implantation mondiale, nous sommes en train de redéfinir la position de l'industrie manufacturière chinoise dans la cha?ne industrielle mondiale.

Ses yeux reflètent le nouveau chapitre de l'impression 3D industrielle chinoise à l'étranger, qui n'est pas seulement un flux de produits, mais aussi l'intégration mondiale des paradigmes de fabrication, des normes techniques et de l'écologie industrielle. (Source : Zongguancun Public)

工業3D打印出海破局:從中國智造到全球制造最先出現在三帝科技股份有限公司。

]]>
SANDY Technology se félicite du succès de la 7e conférence internationale sur la métallurgie des poudres en Asie http://www.ahjfzs.com/fr/news/sandikejizhuhediqijieyazhoufenmoyejinguojihuiyichenggongjuban/ Thu, 23 Oct 2025 07:31:23 +0000 http://www.ahjfzs.com/?p=2426 La 7e conférence et exposition internationale sur la métallurgie des poudres en Asie (APMA2025) s'est tenue avec succès à Qingdao, dans la province de Shandong. L'imprimante à jet de liant métal/céramique BJ 3DPTEK-J400P développée indépendamment par SANDY Technology a remporté le "Prix de l'innovation en métallurgie des poudres", et le Dr Zong Guisheng, directeur du comité d'impression 3D de l'Alliance pour la stratégie d'innovation de l'industrie de la métallurgie des poudres et président du conseil d'administration de SANDY Technology, s'est vu décerner le "Prix de la contribution exceptionnelle à la métallurgie des poudres". Prix de la contribution à la métallurgie des poudres.

三帝科技祝賀第七屆亞洲粉末冶金國際會議成功舉辦最先出現在三帝科技股份有限公司

]]>

La 7e conférence et exposition internationale sur la métallurgie des poudres en Asie (APMA2025) s'est tenue avec succès du 19 au 22 octobre 2025 à Qingdao, dans la province de Shandong. Organisée conjointement par la Powder Metallurgy Industry Technology Innovation Strategy Alliance (CPMA) et la Chinese Society for Metals (CSM), la conférence a rassemblé des experts de haut niveau et des représentants d'entreprises dans le domaine de la métallurgie des poudres du pays et de l'étranger. Imprimante à jet de liant BJ métal/céramique développée indépendamment par SANDY Technology3DPTEK-J400PLe Dr Zong Guisheng, directeur du comité d'impression 3D de l'Alliance pour la stratégie d'innovation technologique de l'industrie de la métallurgie des poudres et président de SANDI Technology, s'est vu décerner le "Prix de la contribution exceptionnelle à la métallurgie des poudres".

En tant que participant important à cette conférence, SANDI Technology s'est fortement impliqué dans de nombreux programmes. Le Dr Zong Guisheng a présidé le sous-forum "Fabrication additive" de la conférence et a présenté un rapport invité sur la "Fabrication par jet de liant BJ", partageant la pratique de pointe de cette technologie pour promouvoir l'industrie de la métallurgie des poudres afin qu'elle soit hautement efficace et peu co?teuse.

Zong Guisheng a souligné dans le rapport que le moulage par injection de poudre traditionnel est confronté à des problèmes tels que les co?ts élevés des moules, les longs cycles de développement et les tailles de produits limitées. Grace à la technologie d'impression 3D par jet de liant (BJ), SANDI Technology a réalisé une fabrication sans moule, un prototypage rapide de structures complexes et la production de pièces de grande taille, aidant ainsi l'industrie à réduire ses co?ts et à gagner en efficacité. Actuellement, la technologie a trouvé des applications à grande échelle dans l'électronique 3C, l'automobile, l'aérospatiale, le refroidissement des puces IA, les systèmes de refroidissement liquide et d'autres domaines.

Le système d'impression métal/céramique à jet de liant BJ permet une fabrication de précision efficace

SANDI Technology a systématiquement ma?trisé un ensemble complet de technologies clés pour l'équipement, les matériaux et les processus de formage de métal/céramique par jet de liant BJ. Sa série d'équipements d'impression 3DPTEK-J160R/J400P/J800P, intégrée à un système précis d'approvisionnement en poudre, de pose de poudre à haute densité et de contr?le à jet d'encre de haute précision, permet de traiter efficacement les problèmes de pose de poudre de petite taille, de prendre en charge l'impression haute résolution 400-1200 dpi, la plus haute précision de ± 0,1 mm, le rendement le plus élevé de 3600cc/h. L'efficacité de moulage la plus élevée est de 3600cc/h.

Figure : SANDY TECHNOLOGY Imprimante de formage à jet de liant pour métal/céramique 3DPTEK-J160R/J400P/J800P

En ce qui concerne le système de matériaux, l'entreprise a mis au point plus de 20 types de formulations de processus, telles que le type écologique à base d'eau et le type à haute efficacité à base de solvant, couvrant une large gamme de matériaux métalliques tels que l'acier inoxydable, l'alliage de titane, l'alliage à haute température, ainsi que des matériaux céramiques et non métalliques tels que le carbure de silicium. Grace à un contr?le systématique du processus de dégraissage et de frittage, l'entreprise est parvenue à un contr?le précis de la forme et des performances des produits, et les performances des produits sont conformes aux normes internationales, voire les dépassent en partie.

S'appuyant sur les avantages de la technologie BJ (haute efficacité, faible co?t et absence de stress thermique), SANDI a réalisé d'importantes percées dans le domaine de la dissipation thermique et a réussi à mouler des matériaux composites de haute qualité, tels que le Cu-diamant et le Cu-SiC, avec des performances supérieures à la norme internationale du MIM. L'entreprise met en ?uvre une stratégie d'équipement différenciée : pour les instituts de recherche scientifique et les entreprises de conception de puces, elle fournit l'équipement de recherche scientifique 3DPTEK-J160R, pour le prototypage rapide et la vérification de la conception thermique ; pour les serveurs refroidis par liquide et d'autres utilisateurs industriels, elle fournit des solutions industrielles intégrées (équipement + poudre spéciale / liant + paquet de processus), pour aider les clients à raccourcir le cycle de développement du processus de 60% ou plus.

L'impression laser de métaux SLM et les systèmes de matériaux à gradient repoussent les limites de la technologie

Outre la technologie de projection de liant, SANDI Technology a également développé de manière indépendante des systèmes d'impression sur métal, notamment l'équipement de fusion sélective par laser SLM AFS-M120/M400, l'équipement de gradient métallique AFS-M120X(T), l'équipement tout-en-un additif et soustractif multi-matériaux AFS-M300XAS, etc., et a réalisé une variété d'acier inoxydable, d'alliage de titane, d'alliage d'aluminium, d'acier de moulage, d'alliage de cobalt-chrome, d'alliage à base de nickel et d'autres matériaux. Nous avons également achevé la mise au point de procédés pour l'acier inoxydable, l'alliage d'aluminium, l'acier de moulage, l'alliage de cobalt-chrome, l'alliage à base de nickel et d'autres matériaux.

Parmi eux, l'AFS-M120X(T) peut assurer l'alimentation en poudre précise à gradient continu de deux matériaux métalliques ou plus, ce qui convient à la recherche sur les performances des matériaux métalliques composites ; l'AFS-M300XAS prend en charge la combinaison à gradient d'un maximum de quatre types de matériaux, et réalise le changement continu de gradient dans le sens horizontal, ainsi que la commutation de la composition des matériaux ou le changement de gradient dans le sens vertical, ce qui est prometteur pour le développement de matériaux à haut débit, l'aérospatiale, l'automobile, le traitement médical et le traitement des moules, etc. Il offre de vastes perspectives pour le développement de matériaux à haut débit, l'aérospatiale, l'automobile, la médecine et le traitement des moules, etc.

SANDI Technology a toujours prêté attention au développement synergique de l'industrie, de l'université et de la recherche, et l'université professionnelle et technique de Shenzhen, l'institut de recherche de l'université Tsinghua de Shenzhen, l'université Jiaotong de Shanghai, l'université des sciences et technologies de Pékin et d'autres universités et institutions de recherche maintiennent une coopération étroite, et continuent à promouvoir la technologie BJ dans le matériau, le processus et l'application de la recherche fondamentale et la transformation des résultats, pour aider les moules industriels, les outils de coupe haut de gamme, les composants électroniques de précision 3C et les produits céramiques complexes de grande taille, ainsi que d'autres domaines. L'échelle d'application de la technologie BJ.

[A propos de SANDI TECHNOLOGY]

SANDI Technology est une entreprise nationale de haute technologie et un "petit géant" qui se concentre sur les équipements de fabrication additive (impression 3D) de qualité industrielle et sur les services de fabrication rapide. L'entreprise a mis en place une cha?ne industrielle complète couvrant la recherche et le développement technologique, la production d'équipements et de matériaux, le soutien aux processus et les services de fabrication. Elle occupe une position de leader dans un certain nombre de technologies de base telles que le binder jetting (BJ) en Chine et encourage activement l'application à grande échelle de l'impression 3D dans les domaines de l'amélioration du moulage, de la dissipation thermique avancée et des soins médicaux de précision.

三帝科技祝賀第七屆亞洲粉末冶金國際會議成功舉辦最先出現在三帝科技股份有限公司

]]>
SANDY Technology s'occupe de la production et de l'expédition des équipements, fonctionnant à plein régime pour assurer la livraison. http://www.ahjfzs.com/fr/news/sandikejishebeishengchanfahuomangquanliyunzhuanbaojiaofu/ Wed, 24 Sep 2025 06:16:39 +0000 http://www.ahjfzs.com/?p=2399 SANDY TECHNOLOGY expédie simultanément des équipements d'impression 3DP sur sable dans le pays et à l'étranger, en s'appuyant sur un certain nombre de technologies de base et sur un réseau de service mondial, afin de fournir des équipements et des solutions d'impression 3D à l'industrie manufacturière.

三帝科技設備生產發貨忙 全力運轉保交付最先出現在三帝科技股份有限公司。

]]>
(ci-après dénommée "SANDI") à Wuhu, dans la province de l'Anhui, une scène animée dans la base de production, plus de 20 ensembles d'équipements de production.équipement d'impression de sable 3DPNous assemblons, testons et expédions les produits selon un calendrier serré, et nous nous dépla?ons à l'intérieur du pays et à l'étranger avec la "vitesse SANDI", afin de livrer les produits aux clients plus rapidement et d'assurer l'avancement des projets des clients.

Il a été rapporté que l'équipement d'impression 3DP sur sable fourni par SANDI Technology à un certain nombre d'entreprises manufacturières nationales à Liaoning, Hebei, Henan, Jiangsu, Guizhou et dans d'autres endroits a été envoyé avec succès récemment. Lorsque l'équipement arrive sur le site du client, l'équipe technique et professionnelle de SANDI assure le suivi de l'assemblage, du débogage et du travail d'acceptation dans un premier temps afin de garantir que l'équipement est mis en production rapidement et qu'il fonctionne de manière stable. à l'heure actuelle, les équipements et les services de SANDI couvrent 26 provinces (y compris les régions autonomes et les municipalités relevant directement du gouvernement central), sont largement utilisés dans la principale ceinture industrielle de fonderie du pays et dans les p?les de fabrication intelligente, et continuent à alimenter la transformation et la mise à niveau des clients.

Dans le même temps, l'expansion du marché à l'étranger a obtenu des résultats remarquables. Un certain nombre d'équipements d'impression 3D envoyés en Corée du Sud, en Turquie, en Italie, en France, en Espagne et dans d'autres régions ont été expédiés avec succès et sont sur le point d'être livrés. à l'heure actuelle, les produits et services de SANDI couvrent de nombreux marchés clés en Europe et en Asie, tels que l'Asie de l'Est, l'Asie du Sud, l'Europe de l'Ouest, l'Europe de l'Est, etc. Le système opérationnel mondial devient de plus en plus parfait et fait preuve d'une forte compétitivité internationale.

SANDI Technology travaille dans le domaine de l'impression 3D industrielle depuis plus de 30 ans, avec une expérience approfondie de la technologie de dép?t de poudre et des équipements stables et fiables. Après des années de validation par le marché, certains des équipements d'impression 3D achetés par les utilisateurs à un stade précoce fonctionnent de manière stable depuis plus de 20 ans. L'entreprise ma?trise également le frittage sélectif par laser (SLS), la fusion sélective par laser (SLM), l'impression 3D à partir de sable (3DP) et la projection de liant (BJ), quatre technologies de base de l'impression 3D. Son processus de sable composite "3DP + SLS" a été sélectionné par le ministère de l'industrie et des technologies de l'information pour l'application typique des scénarios de fabrication additive, ce qui lui permet de fournir un soutien technique mature pour des besoins de fabrication diversifiés. Elle peut fournir une garantie technologique mature pour des besoins de fabrication diversifiés.

Dans le processus de production, SANDI Technology met en ?uvre une gestion allégée, optimise en permanence le processus d'assemblage et de mise en service des équipements et garantit la fiabilité et la cohérence de la qualité des produits tout en améliorant l'efficacité de la production en renfor?ant la collaboration entre les départements et les opérations standardisées sur le site. Tous les composants clés sont strictement inspectés et qualifiés avant d'être assemblés, ce qui permet d'assurer la tra?abilité de la qualité et un contr?le précis des pièces jusqu'à l'ensemble de la machine.

Lors du processus de livraison, l'entreprise applique strictement le mécanisme de vérification de l'usine, le responsable compétent vérifie et inspecte l'équipement un par un conformément à la "demande de permis d'usine pour l'équipement", et procède à un marquage spécial et à une explication pour les besoins personnalisés du client, afin de garantir que l'équipement est livré avec précision et en bon état. Grace à une coordination interservices efficace et à un transfert d'informations en temps réel, l'entreprise assure une connexion transparente entre la production et la livraison et continue à consolider son avantage en matière de livraison efficace.

SANDI Technology ne se contente pas de fournir des équipements de haute performance, mais se concentre également sur les services de cycle complet. Nous proposons à nos clients une formation pratique complète et des conseils en matière de processus par l'intermédiaire de nos centres de fabrication intelligente en 3D répartis dans tout le pays. L'équipe après-vente de Pékin, Shaanxi, Hebei, Henan, Guangxi, Shandong, Anhui et d'autres régions fournit une réponse rapide et un service de proximité, garantissant efficacement le fonctionnement continu et stable de l'équipement du client. Parallèlement, l'entreprise encourage activement les synergies de marché et le partage des ressources afin d'aider les clients à élargir leurs opportunités commerciales et à améliorer leur compétitivité sur le marché.

En outre, SANDY Technology attache une grande importance au renforcement des capacités professionnelles de l'équipe, grace à des formations régulières et à un mécanisme de coordination de la production, afin d'améliorer en permanence l'efficacité de l'assemblage et la qualité des produits. L'entreprise a établi une coopération stratégique avec un certain nombre de fournisseurs internationaux de services logistiques de haute qualité afin de personnaliser des solutions de transport s?res et efficaces pour chaque commande, garantissant ainsi pleinement le respect des délais et l'intégrité de la production globale d'équipements.

Dans le contexte de l'accélération de la transformation intelligente et numérique de l'industrie manufacturière mondiale, SANDY Technology, s'appuyant sur le système d'innovation synergique trois-en-un de "l'Institut de recherche scientifique et technologique de Guoqian, le poste de travail postdoctoral et l'équipe de recherche et développement de l'entreprise", fait continuellement des percées dans les technologies clés, optimise les performances des produits, améliore continuellement le réseau international de marketing et de service, et renforce la capacité de service localisé des pays d'outre-mer pour fournir des équipements d'impression 3D de haute performance et des solutions intégrées de fabrication rapide pour les clients mondiaux avec une vision globale et des normes internationales. Une vision globale et des normes internationales pour fournir aux clients du monde entier des équipements d'impression 3D et des solutions de fabrication rapide de haute performance afin de favoriser le développement de haute qualité de l'industrie manufacturière.

[A propos de SANDI TECHNOLOGY]

(3D Printing Technology, Inc.) est une entreprise nationale de haute technologie spécialisée dans les équipements de fabrication additive (impression 3D) de qualité industrielle et les services de fabrication rapide, ainsi qu'une "petite entreprise géante" dotée d'une expertise spécialisée. Elle a été investie par Jinko Junchuang, Zhongjin Capital, Zhongke Haichuang, Become Capital, Beijing New Materials Fund, SINOMACH Fund et d'autres institutions. Visant la réduction des co?ts, l'amélioration de l'efficacité et de la qualité, l'entreprise a construit une cha?ne industrielle complète couvrant la R&D et la production d'équipements et de matériaux d'impression 3D, le soutien à la technologie des processus et la fabrication rapide de produits finis. Elle est largement utilisée dans les domaines de l'aérospatiale, de l'électricité et de l'énergie, des pompes et des valves de navires, de l'automobile, du transport ferroviaire, des machines industrielles, de l'électronique 3C, de la rééducation et du traitement médical, de l'éducation et de la recherche scientifique, de la sculpture et de la création culturelle.

三帝科技設備生產發貨忙 全力運轉保交付最先出現在三帝科技股份有限公司

]]>
Comment l'impression 3D peut-elle résoudre le problème du taux élevé de déchets de fonderie : révolutionner le processus de fonderie, améliorer la qualité et l'efficacité http://www.ahjfzs.com/fr/blogs/how-3d-printing-solves-the-problem-of-high-scrap-rates-in-casting/ Thu, 21 Aug 2025 09:48:39 +0000 http://www.ahjfzs.com/?p=2377 Le taux de rebut des pièces moulées reste élevé ? Cet article analyse en profondeur l'impression 3D industrielle par le biais du moulage sans moule, du moulage en une seule pièce et de la simulation numérique, depuis la source pour éliminer la porosité, le retrait et d'autres défauts, et améliorer globalement la qualité du moulage et l'efficacité de la production.

3D打印如何解決鑄造高報廢率問題:革新鑄造工藝,提升品質與效率最先出現在三帝科技股份有限公司

]]>
Pierre angulaire de la fabrication industrielle, l'industrie de la fonderie est depuis longtemps confrontée à un certain nombre de défis profondément enracinés. Parmi ceux-ci, les taux de rebut élevés constituent un "co?t caché" qui ne signifie pas seulement un gaspillage direct de matières premières, mais qui entra?ne également des cycles de développement de produits longs, des co?ts de retouche élevés et la perte d'opportunités de marché précieuses. Pour certaines structures complexes et exigences techniques élevées des pièces moulées, le rendement du processus traditionnel chutera de fa?on spectaculaire. Ce dilemme a incité l'industrie à rechercher d'urgence un changement technologique qui s'attaque aux causes profondes du problème. Dans ce contexte, la fabrication additive (communément appelée impression 3D), avec ses avantages uniques pour l'industrie traditionnelle du moulage, fournit une cha?ne complète subversive de solutions numériques pour la transformation et la mise à niveau de l'industrie, ce qui ouvre une nouvelle voie.

Chapitre 1 : Plongée en profondeur : les causes profondes des défauts de moulage traditionnels

1.1 Défauts de moulage courants et leurs causes profondes

Les défauts de moulage sont la cause directe des taux de rebut élevés. Ces défauts ne sont pas accidentels, mais sont dictés par les limites physiques et de processus inhérentes aux procédés de moulage conventionnels.

tout d'abordbulle d'airaveccratère. La porosité provient principalement de l'implication ou de l'incapacité à évacuer efficacement les gaz (par exemple l'hydrogène, le dégazage des moules) dans le métal liquide au cours du processus de coulée et de solidification. Lorsque le gaz dissous dans le métal liquide est libéré en raison d'une solubilité réduite pendant le refroidissement et la solidification, des bulles se forment à l'intérieur ou à la surface de la pièce moulée si elles ne sont pas évacuées à temps. Le retrait est un phénomène naturel de contraction du volume du métal pendant la solidification. Si le système de refroidissement n'est pas correctement con?u, ce qui entra?ne des températures localement élevées dans le moule, ou un retrait d'appoint insuffisant, des vides ou des dépressions internes, connus sous le nom de trous de retrait, se formeront.

Suivant.pris en sandwichavecmodèle incorrect. Dans la coulée en sable conventionnelle, les moules et les noyaux de sable doivent généralement être assemblés et collés après avoir été fabriqués séparément à partir de plusieurs pièces. Au cours de ce processus, toute rupture minime du noyau de sable ou tout collage incorrect peut entra?ner la capture de particules de sable dans le liquide métallique, formant ainsi des défauts de piégeage du sable. En outre, si la surface de séparation du moule ou le noyau de sable n'est pas positionné avec précision, il peut également en résulter des défauts de moulage où les parties supérieure et inférieure de la pièce moulée sont mal alignées.

finbarrière froideaveccrépitements. Lorsque la fluidité du métal liquide est médiocre, que la température de coulée est trop basse ou que la conception de la coulée est étroite, les deux flux de métal se solidifient avant de pouvoir fusionner complètement au niveau du bord d'attaque, laissant une ségrégation froide faiblement connectée. Et pendant le refroidissement et la solidification, s'il y a des contraintes inégales dans la coulée, des fissures thermiques peuvent se produire pendant la rétraction.

1.2 Le dilemme "co?t élevé" et "faible efficacité" de la fabrication traditionnelle de moules

Le processus de fabrication des moules est un autre point faible du processus de moulage traditionnel. La fabrication traditionnelle de bo?tes à noyaux en bois ou en métal est un processus à forte intensité de main-d'?uvre, dépendant d'un personnel hautement qualifié, avec des délais d'exécution longs et des co?ts importants. Toute modification mineure de la conception nécessite la reconstruction du moule, ce qui entra?ne des co?ts supplémentaires élevés et des semaines, voire des mois, d'attente.

Cette dépendance excessive à l'égard des moules physiques limite aussi fondamentalement la liberté de conception des pièces moulées. Les canaux internes complexes et les structures creuses ne peuvent pas être moulés en une seule pièce par les procédés traditionnels de fabrication de moules, et doivent être démontés en plusieurs noyaux individuels, qui sont ensuite assemblés à l'aide de gabarits complexes et d'un travail manuel. 2. Cette limitation des processus oblige les concepteurs à faire des compromis et à sacrifier les performances des pièces pour la facilité de fabrication, par exemple en simplifiant les canaux de refroidissement pour s'adapter aux processus de per?age qui ne permettent pas un refroidissement optimal.

En résumé, le taux de rebut élevé du moulage traditionnel n'est pas un problème technique isolé, mais un produit de ses processus de base. Le mode traditionnel "essais et erreurs physiques" oblige la fonderie, lorsqu'elle découvre des défauts, à passer par un long processus de modification du moule et de nouveaux essais, ce qui constitue un cycle à haut risque et à faible efficacité. La valeur révolutionnaire de l'impression 3D est qu'elle fournit une solution "sans moule", qui remodèle fondamentalement l'ensemble du processus de production, ce qui remplacera le mode traditionnel "essais et erreurs physiques". La valeur révolutionnaire de l'impression 3D réside dans le fait qu'elle fournit une solution "sans moule" qui remodèle fondamentalement l'ensemble du processus de production, transformant le modèle traditionnel "d'essais et d'erreurs physiques" en un modèle de "vérification par simulation numérique", qui place le risque devant le processus, éliminant ainsi la plupart des causes d'obsolescence à la source.

Chapitre 2 : L'impression 3D : une avancée révolutionnaire, de la technologie à la solution

2.1 Production sans moule : éliminer les causes profondes de l'obsolescence

Le principal avantage de l'impression 3D est sa méthode de production "sans moule", qui lui permet de contourner tous les problèmes liés aux moules inhérents au moulage traditionnel, réduisant ainsi radicalement les taux de rebut.

Directement de la CAO au moule en sable. Le jet de liant dans la fabrication additive est la clé pour y parvenir. Il s'agit de pulvériser avec précision un liant liquide sur de fines couches de poudre (par exemple, du sable de silice ou de céramique) à partir d'une tête d'impression de qualité industrielle basée sur un modèle numérique de CAO en 3D. En collant couche par couche, le modèle 3D du fichier numérique est construit sous la forme d'un moule ou d'un noyau de sable solide. Ce processus élimine complètement la nécessité de recourir à des moules physiques. Comme il n'est pas nécessaire de concevoir et de fabriquer de longs moules, le cycle de fabrication des moules peut être réduit de plusieurs semaines, voire de plusieurs mois, à quelques heures ou quelques jours, ce qui permet l'impression à la demande et une réponse rapide aux changements de conception, réduisant ainsi considérablement l'investissement initial et les co?ts liés aux essais et aux erreurs.

Moulage en une seule pièce et structures complexes. L'approche de fabrication en couches de l'impression 3D offre une liberté de conception sans précédent. Elle permet de mouler en un seul ensemble des noyaux de sable complexes qui devraient traditionnellement être divisés en plusieurs parties, comme les couloirs sinueux à l'intérieur d'un moteur. Non seulement cela simplifie le processus de moulage, mais plus important encore, cela élimine complètement le besoin d'assemblage, de collage et de désalignement des noyaux, éradiquant ainsi les défauts courants tels que le piégeage du sable, les déviations dimensionnelles et les déformations causées par de tels problèmes.

2.2 Optimisation du processus : des données pour garantir la qualité de la coulée

La valeur de l'impression 3D va bien au-delà de l'absence de moule. Elle confère au processus de fabrication une toute nouvelle dimension numérique, permettant de valider et d'optimiser les données avant que la fabrication physique n'ait lieu, transformant ainsi la "remédiation" en "anticipation".

Simulation et conception numériques. Au cours de la phase de conception numérique précédant l'impression 3D, les ingénieurs peuvent utiliser des logiciels avancés d'analyse par éléments finis (FEM) pour effectuer des simulations virtuelles précises des processus de coulée, de rétrécissement et de refroidissement. Il est ainsi possible d'anticiper et de corriger les défauts potentiels qui pourraient entra?ner une porosité, un retrait ou des fissures avant la production réelle. Par exemple, en simulant l'écoulement du métal liquide dans les canaux, la conception du système de coulée peut être optimisée pour assurer un remplissage en douceur et une ventilation efficace. Cette anticipation numérique améliore considérablement le taux de réussite du premier essai et garantit les rendements de coulée à la source.

Excellentes propriétés du sable. Les moules en sable imprimés en 3D, grace à leur construction couche par couche, peuvent atteindre des densités uniformes et une perméabilité à l'air qu'il est difficile d'obtenir avec les procédés conventionnels. Ces caractéristiques sont cruciales pour le processus de moulage. Une perméabilité au gaz uniforme garantit que les gaz générés à l'intérieur du moule de sable peuvent s'échapper en douceur pendant le processus de coulée, ce qui réduit considérablement les défauts de porosité causés par une mauvaise ventilation.

Refroidissement avec forme. La technologie de refroidissement conforme est une autre application révolutionnaire de l'impression 3D dans le domaine des moules de coulée. Les inserts de moules fabriqués par impression 3D de métal sont dotés de canaux de refroidissement qui peuvent être con?us pour imiter exactement les contours de la surface du moule. Cela permet d'obtenir un refroidissement rapide et uniforme, réduisant considérablement la déformation et le rétrécissement causés par une contraction inégale, ce qui réduit considérablement le taux de rebut. D'après les données disponibles, les moules dotés d'un refroidissement continu peuvent réduire la durée des cycles d'injection de 70%, tout en améliorant considérablement la qualité des produits.

Du "tatonnement physique" à la "prospective numérique". La principale contribution de l'impression 3D est de transformer le modèle traditionnel de fonderie "essais et erreurs" en "fabrication anticipée". Elle permet aux fonderies d'effectuer de nombreuses itérations dans un environnement numérique de manière rentable, ce qui constitue un changement fondamental dans l'état d'esprit et le processus commercial. Ce modèle de "fabrication hybride" facilite l'adoption de l'impression 3D par les fonderies traditionnelles et permet la production la plus efficace. Par exemple, l'impression 3D peut être utilisée pour créer les noyaux de sable les plus complexes et les plus sujets aux erreurs, qui peuvent ensuite être combinés avec des moules de sable fabriqués à l'aide de méthodes traditionnelles, ce qui permet de "tirer parti des points forts".

Chapitre 3 : SANTI TECHNOLOGY : un moteur numérique pour renforcer l'industrie de la fonderie

3.1 équipement de base : "force vive" pour l'innovation en matière de moulage

En tant que pionnier et leader dans le domaine de la fabrication additive en Chine, 3DPTEK apporte un soutien solide à l'industrie de la fonderie grace à son équipement de base développé par ses soins.

Les principales lignes de produits de l'entreprise sont les suivantesImprimante à sable 3DPqui met en évidence son leadership en matière de technologie. Appareils phares3DPTEK-J4000Avec une taille de moulage extra-large de 4000 x 2000 x 1000 mm, elle est très compétitive dans le monde entier. Cette grande taille permet de mouler des pièces complexes et de grande taille en une seule pièce, sans qu'il soit nécessaire de les assembler, ce qui élimine les défauts potentiels causés par l'assemblage. En même temps, par exemple

3DPTEK-J1600PlusCes appareils offrent une grande précision de ±0,3 mm et des vitesses d'impression efficaces pour garantir une qualité supérieure tout en produisant rapidement.

En outre, la technologie SANTIéquipement SLS (frittage sélectif par laser)Des séries telles queLaserCore-6000Les machines sont également excellentes dans le domaine du moulage de précision. Cette série d'équipements est particulièrement adaptée à la fabrication de moules en cire pour le moulage à la cire perdue, offrant une solution plus précise pour les pièces fines et haut de gamme telles que les pièces aérospatiales et médicales.

Il convient de mentionner que SANDI Technology n'est pas seulement un fournisseur d'équipement, mais aussi un expert en solutions de matériaux et de processus. La société a développé plus de 20 liants et 30 formulations de matériaux compatibles avec la fonte, l'acier moulé, l'aluminium, le cuivre, le magnésium et d'autres alliages de fonderie. Cela garantit que son équipement peut être intégré de manière transparente dans une large gamme d'applications de coulée, en fournissant aux clients une assistance technique complète.

3.2 Services All-link : solutions intégrées de coulée

L'avantage concurrentiel de SANDY Technology ne réside pas seulement dans son matériel, mais aussi dans les solutions intégrées qu'elle fournit tout au long de la cha?ne. L'entreprise dispose d'un solide système d'innovation "Trinity" - "institut de recherche + poste de travail post-doctoral + équipe de R&D". Ce modèle garantit une itération technologique continue et une dynamique d'innovation, et l'accumulation de plus de 320 brevets est une preuve solide de son leadership technologique.

L'entreprise propose un service clé en main "tout-en-un", de la conception à l'impression 3D, en passant par le moulage, l'usinage et l'inspection. Ce modèle d'intégration verticale simplifie considérablement la gestion de la cha?ne d'approvisionnement du client, réduit les co?ts de communication et les risques, et permet à la fonderie de se concentrer sur son c?ur de métier.

3.3 Cas classique : preuve de valeur fondée sur des données

Les cas réussis sont l'outil le plus persuasif pour convaincre les clients potentiels. Grace à une série de projets réels, SANDY Technology a quantifié la valeur commerciale significative qu'apporte la technologie de l'impression 3D.

afin deBo?tiers de moteurs automobiles refroidis par eauà titre d'exemple, ce cas démontre parfaitement comment le processus de moulage en sable 3DP résout le problème du moulage en une seule pièce : "grande taille, paroi mince, canaux de refroidissement en spirale complexes". 21. L'application réussie de cette technologie dans le domaine des véhicules à énergie nouvelle a prouvé ses avantages significatifs dans la production de pièces moulées à structure complexe et à haute performance.

D'autre partCorps de pompe industrielleDans le cas de SANDI, l'entreprise a adopté le modèle de fabrication hybride "moule extérieur 3DP + noyau intérieur SLS". Cette stratégie complémentaire a permis de raccourcir le cycle de production de 80%, tout en améliorant la précision dimensionnelle des pièces moulées au niveau CT7, ce qui a parfaitement prouvé l'effet puissant du mode de fabrication hybride.

Le projet de coentreprise avec Xinxin Foundry constitue l'argument commercial le plus solide. En introduisant la technologie d'impression 3D, la fonderie a augmenté son chiffre d'affaires de 1 351 TP3T, doublé ses marges bénéficiaires, divisé par deux ses délais d'exécution et réduit ses co?ts de 301 TP3T, une série de chiffres quantitatifs qui constituent une preuve irréfutable du retour sur investissement de la technologie d'impression 3D dans l'industrie de la fonderie.

Le tableau ci-dessous montre comment l'impression 3D peut résoudre les problèmes de l'industrie de la fonderie, tant au niveau technique qu'au niveau de la valeur commerciale :

Défauts de moulage ou points douloureuxCauses et limites de l'artisanat traditionnelSolutions d'impression 3D et valeur ajoutée
bulle d'airMauvaise ventilation du moule ; métal liquide piégé dans le gazPerméabilité à l'air uniforme et contr?lée du sable ; simulation numérique du système de coulée optimisé
cratèreRefroidissement inégal ; rétrécissement insuffisantOptimisation prédictive par simulation numérique ; refroidissement uniforme par canaux de refroidissement fa?onnés
Sandwich, mauvaise formeAssemblage multiconducteurs, collage et désalignement ; erreurs d'ajustement du plan de jointLes noyaux complexes sont moulés en une seule pièce, ce qui élimine le besoin d'assemblage ; aucune surface de séparation physique n'est nécessaire.
Co?ts de moulage élevésNécessite des moules physiques, une main-d'?uvre hautement qualifiée, de longs délais de livraison.Production sans moule ; impression directe à partir de fichiers CAO, fabrication à la demande
Inefficacité et longs délais d'exécutionLongue fabrication de moules ; essais et erreurs répétésRéduction du temps de cycle du 80% ; possibilité de conception itérative rapide ; impression à la demande
Augmentation de la valeur de l'entrepriseFaibles marges et livraisons irrégulièresChiffre d'affaires en hausse de 1 35%, marges doublées ; co?ts en baisse de 30%

Chapitre 4 : Regarder vers l'avenir : numérisation et durabilité dans l'industrie de la fonderie

La technologie de l'impression 3D conduit l'industrie de la fonderie à passer de la "fabrication" traditionnelle à la "fabrication intelligente". Selon le rapport concerné, l'échelle de l'industrie chinoise de la fabrication additive continue de cro?tre à un rythme élevé et, en 2022, elle dépassera 32 milliards de RMB. Ces données montrent clairement que la transformation numérique est devenue une tendance industrielle irréversible.

à l'avenir, l'impression 3D sera profondément intégrée à l'intelligence artificielle (IA), à l'IdO et à d'autres technologies pour parvenir à une automatisation complète et à une gestion intelligente des lignes de production. Les fonderies peuvent utiliser des algorithmes d'IA pour optimiser les paramètres de coulée et des capteurs IoT pour surveiller le processus de production en temps réel, ce qui permet d'améliorer encore les taux de rendement et l'efficacité de la production.

En outre, les avantages uniques de l'impression 3D dans la réalisation de conceptions légères complexes aideront l'automobile, l'aérospatiale et d'autres industries en aval à améliorer les performances des produits et à réduire la consommation d'énergie, ce qui s'inscrit parfaitement dans le cadre du développement durable à l'échelle mondiale. une voie de développement respectueuse de l'environnement pour l'industrie de la fonderie.

remarques finales L'impression 3D n'est pas la fin de la fonderie, mais son innovateur. Elle offre à l'industrie traditionnelle de la fonderie une flexibilité, une efficacité et une assurance qualité sans précédent grace à ses deux avantages fondamentaux que sont le "sans moule" et le "numérique". Elle permet aux fonderies de s'affranchir des taux de rebut élevés et d'entrer dans une nouvelle ère de plus grande efficacité, de compétitivité et d'innovation. Pour toute fonderie cherchant à se démarquer sur un marché concurrentiel, l'adoption de la technologie d'impression 3D, représentée par SanDi Technology, n'est plus un choix facultatif, mais une voie nécessaire vers l'avenir.

3D打印如何解決鑄造高報廢率問題:革新鑄造工藝,提升品質與效率最先出現在三帝科技股份有限公司

]]>
Comment l'impression 3D peut-elle éliminer le retrait de la fonte en optimisant la structure interne ? http://www.ahjfzs.com/fr/blogs/casting-shrinkage-cavity-issues/ Thu, 21 Aug 2025 08:44:33 +0000 http://www.ahjfzs.com/?p=2374 Le rétrécissement des pièces moulées est-il votre problème ? Cet article analyse en profondeur la manière dont l'impression 3D industrielle peut résoudre le problème du retrait de la fonte à la racine en optimisant la structure interne et le refroidissement suivant la forme avec la liberté d'une conception sans moule, et en réalisant une amélioration globale des co?ts, des délais et de la qualité.

3D打印如何通過優化內部結構來消除鑄件縮孔最先出現在三帝科技股份有限公司。

]]>
Le rétrécissement, tel qu'il est caché dans le moulage de la "blessure sombre" interne, est le processus de moulage traditionnel d'un défaut courant, difficile à éradiquer. Il affecte non seulement la beauté du moulage, mais menace aussi directement sa résistance et ses propriétés mécaniques. Lorsque le métal en fusion se contracte en volume au cours du processus de solidification et qu'il ne re?oit pas suffisamment de métal liquide, des vides se forment dans la pièce coulée ou à la surface, c'est-à-dire que l'on parle souvent de retrait ou de contraction ! .  

L'élimination des trous de retrait a toujours été un défi complexe pour les fonderies et les ingénieurs, les méthodes traditionnelles reposant souvent sur l'expérience et l'ajustement de la conception des moules, des systèmes de coulée et des processus de refroidissement par essais et erreurs. . Toutefois, avec l'avènement des technologies de fabrication additive, en particulier l'impression 3D de sable de qualité industrielle, la conception et la production de pièces moulées ont été révolutionnées, offrant de nouveaux moyens sans précédent pour résoudre complètement les problèmes de retrait.  

1. les causes profondes du retrait de la coulée : les limites géométriques des moules conventionnels

Pour comprendre comment l'impression 3D résout les problèmes, il faut d'abord analyser en profondeur les points faibles du moulage traditionnel. Les principales raisons de la formation d'un retrait peuvent être attribuées à deux éléments :

  1. Compenser les insuffisances de rétrécissement : Au fur et à mesure que la pièce coulée se solidifie et se rétracte, elle doit être constamment réalimentée en métal liquide par le biais du système de coulée et de la colonne montante. Si les canaux de réapprovisionnement ne sont pas correctement con?us ou sont insuffisants, le métal liquide ne peut pas être transporté vers les zones où le réapprovisionnement est le plus nécessaire, ce qui entra?ne la création de vides. ?
  2. Solidification inégale : Si la vitesse de refroidissement des différentes zones de la coulée n'est pas cohérente, la chaleur a du mal à se diffuser efficacement, ce qui entra?ne la formation de joints chauds (points chauds). Ces points chauds sont les dernières zones solidifiées, lorsque le métal environnant s'est solidifié, ils manquent de supplément de métal liquide, ce qui facilite la formation de trous de retrait. ?

Dans la coulée conventionnelle, les moules et les noyaux sont fabriqués par des outils physiques dont la géométrie est limitée par l'usinabilité et l'aptitude au démoulage. Par exemple, les trous percés pour le passage de l'eau de refroidissement ne peuvent être que des lignes droites. . Il est donc difficile pour les ingénieurs de concevoir des canaux de rétraction complexes et incurvés ou des canaux de refroidissement à l'intérieur du moule pour contr?ler avec précision le processus de solidification, ce qui augmente le risque de défauts de rétraction. .  

2. Solutions d'impression 3D : liberté de conception pour donner "vie" aux moules et aux matrices

Les principaux atouts des imprimantes 3D à sable industriel sont les suivantsLiberté de conceptionrépondre en chantantProduction sans mouleIl imprime des moules et des noyaux en sable, couche par couche, directement à partir de fichiers CAO en 3D. . Cette propriété permet de dépasser radicalement les limites géométriques des procédés conventionnels et offre plusieurs moyens puissants d'éliminer le rétrécissement, comme suit :  

Option 1 : Optimisation des canaux de remplissage et de rétraction pour une perfusion précise

Grace à la technologie de l'impression 3D, les ingénieurs peuvent concevoir le système de rétraction optimal à l'intérieur du moule sans avoir à tenir compte de l'usinabilité.

  • Système de versement intégré : Traditionnellement, le système de carotte (comprenant la carotte et la colonne montante) doit être fabriqué et assemblé séparément. L'impression 3D permet d'imprimer l'ensemble du système de carotte, la colonne montante de remplissage et le moule lui-même en une seule pièce. Cette conception intégrée garantit une connexion sans faille et un alignement précis des canaux, ce qui réduit considérablement le risque de retrait d? à des erreurs d'assemblage. ?
  • Des rehausses de remplissage con?ues avec précision : L'impression 3D permet de concevoir et d'imprimer avec précision des colonnes montantes de retrait au-dessus des zones de joints chauds de la pièce moulée, assurant un flux constant de métal en fusion pour combler le vide créé par le retrait de solidification. Il a été démontré que les colonnes montantes de débordement au-dessus de la pièce moulée peuvent évacuer efficacement les gaz, réduisant ainsi les défauts de porosité dans la pièce moulée. ?
  • éliminer la sous-cotation et les obstacles structurels complexes : Dans les processus traditionnels, les contre-dépouilles complexes et les passages internes nécessitent l'assemblage de plusieurs noyaux, ce qui non seulement augmente les erreurs d'assemblage, mais peut aussi facilement conduire à des noyaux délogés ou mal alignés. L'impression 3D permet de combiner plusieurs noyaux individuels en un seul noyau complexe et intégré, ce qui élimine complètement le besoin d'assemblage et améliore la précision et la qualité de la pièce moulée. ?

Option 2 : Refroidissement conforme pour une solidification uniforme

Pour les moules eux-mêmes, l'impression 3D peut être tout aussi révolutionnaire. EnRefroidissement conforme(conformal cooling), qui permet de concevoir des canaux de refroidissement à l'intérieur du moule qui correspondent aux contours de la surface de la pièce moulée. .  

  • Principe : Les canaux de refroidissement conventionnels sont percés en ligne droite et ne couvrent pas toutes les zones à refroidir, ce qui entra?ne des températures inégales dans le moule. Le refroidissement conforme, quant à lui, utilise l'impression 3D pour intégrer des canaux de refroidissement courbes et serpentins dans le moule de manière à ce qu'ils s'adaptent parfaitement à la surface de la pièce moulée. ?
  • Avantage : Cette conception permet un refroidissement plus uniforme et réduit considérablement le risque de surchauffe localisée du moule. Un gradient de température plus équilibré signifie que le processus de solidification est mieux contr?lé, ce qui réduit radicalement la formation de joints chauds et prévient ainsi le retrait. Il a été démontré que l'utilisation d'un moule à refroidissement par suivi de forme réduit la variation de température pendant le refroidissement du moule jusqu'à 18°C, ce qui réduit considérablement le risque de gauchissement de la pièce moulée. ?

Option 3 : Simulation numérique et itération rapide pour prévenir les problèmes avant qu'ils ne surviennent

Le flux de travail numérique de l'impression 3D offre aux ingénieurs de précieuses possibilités d'essais et d'erreurs avant de passer à la production. .  

  • Logiciel de simulation de coulée : Les ingénieurs peuvent utiliser un logiciel de simulation de moulage (par exemple Cimatron) pour simuler l'écoulement et la solidification du métal en fusion. Si les résultats de la simulation révèlent un risque de retrait, la conception du moule peut être rapidement ajustée, par exemple en modifiant l'emplacement de la carotte ou de la colonne montante, puis testée à nouveau virtuellement. ?
  • Prototypage et itération rapides : Si un prototype physique est nécessaire, l'impression 3D permet d'imprimer un moule ou un noyau en quelques heures ou quelques jours. Cela permet aux ingénieurs d'itérer et de valider les conceptions plusieurs fois à une fraction du co?t et de la vitesse. Ce modèle de développement agile est inimaginable avec le moulage traditionnel, qui nécessite la fabrication de moules co?teux et de longs délais d'attente. ?

3. il ne s'agit pas seulement d'éliminer les défauts, mais de faire un bond en avant dans l'efficacité

L'utilisation de la technologie de l'impression 3D pour résoudre le problème du rétrécissement des pièces moulées permet non seulement d'améliorer la qualité des produits, mais aussi de créer une série de cha?nes de valeur commerciale :

  • Réduire les co?ts : L'impression 3D réduit considérablement les co?ts de production en éliminant les aspects physiques co?teux de la fabrication des moules et des outils. Selon des études, l'impression 3D permet d'économiser jusqu'à 50%-90% par rapport aux méthodes traditionnelles. ?
  • Raccourcir le délai de livraison : Le temps de fabrication des moules est passé de semaines, voire de mois, à quelques heures, ce qui permet aux entreprises de répondre plus rapidement aux demandes du marché. Dans un cas, une entreprise a pu réduire ses délais de production de neuf semaines en utilisant une imprimante 3D à sable. ?
  • Réduction du taux de rebut : La précision et la cohérence des moules ont été grandement améliorées, ce qui a permis de réduire les défauts de moulage dus à l'erreur humaine ou à l'usure des moules, et donc de réduire considérablement le taux de rebut. ?
  • Simplifier le processus : Le regroupement de plusieurs pièces en un seul composant intégré simplifie les processus d'assemblage complexes et réduit la dépendance à l'égard d'une main-d'?uvre hautement qualifiée. ?

Conclusion : l'impression 3D - un "remède" pour l'industrie de la fonderie

Le retrait de la coulée n'est pas un problème technique isolé, mais le processus de coulée traditionnel face à la conception complexe et aux exigences de haute précision des défis systémiques exposés. Les imprimantes 3D à sable industriel, avec leurs avantages technologiques uniques, offrent un "remède" au problème à sa source. Elles éliminent le risque de retrait en donnant aux ingénieurs une liberté de conception sans précédent, leur permettant de construire des structures internes et des systèmes de refroidissement optimisés. .  

Pour la poursuite d'une excellente qualité, d'une production efficace et de l'optimisation des co?ts des entreprises de fonderie modernes, l'impression 3D n'est plus une "option supplémentaire" dispensable, mais pour promouvoir la modernisation industrielle, dans la concurrence féroce sur le marché pour gagner la première opportunité pour les technologies clés. Il ne s'agit pas seulement d'un équipement, mais aussi d'un pont vers l'avenir pour la "coulée numérique", afin de résoudre les anciens "problèmes de coulée" ! .

3D打印如何通過優化內部結構來消除鑄件縮孔最先出現在三帝科技股份有限公司。

]]>
2025 Sand 3D Printer Selection Guide : Choisir les bons paramètres de machine en fonction de la taille de la pièce coulée et du matériau utilisé http://www.ahjfzs.com/fr/blogs/2025-sand-mold-3d-printer-selection-guide/ Thu, 21 Aug 2025 08:05:26 +0000 http://www.ahjfzs.com/?p=2371 2025 Comment choisir une imprimante 3D à sable ? 3DPTEK modèles grandeur nature (J1600/J2500/J4000) + processus de matériaux open-source, aider les entreprises de fonderie à sélectionner avec précision le modèle, réduire les co?ts 30%+, améliorer la précision de coulée à ±0,3mm.

2025 砂型 3D 打印機選型指南:根據鑄件尺寸、材質選對設備參數最先出現在三帝科技股份有限公司

]]>
Dans l'industrie du moulage, qui s'oriente vers un processus intelligent, l'imprimante 3D à sable, en vertu de son avantage "sans moule, haute précision, structure complexe du moulage en une seule pièce", devient l'équipement clé pour améliorer la compétitivité des entreprises. Cependant, il existe de nombreux modèles d'imprimantes 3D à sable sur le marché (avec des tailles de moulage allant de 500×500×500mm à 4000×2000×1500mm, et des matériaux appropriés couvrant le sable de silice, le sable de zircone, le sable de céramique, etc.), et une mauvaise sélection de modèles conduira non seulement à l'inactivité de l'équipement et au gaspillage des co?ts, mais affectera également la livraison de la production en raison d'une qualité d'impression inférieure à la norme. Cet article prend l'exemple de l'imprimante 3D à sable 3DPTEK et fournit une analyse approfondie sur la manière de faire correspondre avec précision les paramètres de l'équipement en fonction de la taille et du matériau de la pièce moulée, afin de maximiser les bénéfices de l'investissement dans l'équipement.

I. Stratégie de sélection des équipements en fonction de la taille des pièces coulées

La taille de la pièce moulée est un facteur essentiel pour déterminer les spécifications d'une imprimante 3D à sable, qui doit être sélectionnée en fonction des exigences actuelles et des développements futurs :

  1. Analyse statistique des dimensions de moulage existantes
    1. Les entreprises doivent trier de manière exhaustive les commandes de moulage des 1 à 2 dernières années, en fonction du type de produit (pièces automobiles, composants structurels pour l'aviation, pompes et vannes), de la classification, des statistiques sur la longueur, la largeur et la hauteur de chaque type de gamme de taille de pièces moulées, de l'histogramme de distribution des tailles d'emboutissage. Par exemple, les statistiques d'une fonderie automobile ont révélé que les pièces moulées du bloc moteur 60% ont une longueur de 300 à 500 mm, une largeur de 200 à 350 mm et une hauteur de 150 à 250 mm ;
    1. Identifiez la "gamme de tailles de base" présentant le pourcentage le plus élevé et utilisez-la comme base pour filtrer les imprimantes. Comme dans le cas précédent, le système de filtrage de 3DPTEK 3DPTEK-J1800(taille de moulage 1800×1200×1000mm) peut facilement couvrir la plupart des besoins d'impression de sable de bloc moteur, afin d'éviter les "petites charrettes tirées par des chevaux" (la taille de moulage de l'équipement est trop grande, gaspillant l'espace de l'équipement et les co?ts d'impression) ou "trop grand pour le travail" (équipement). (la taille de moulage de l'équipement n'est pas suffisante pour imprimer de grandes pièces moulées).
  2. Envisager l'expansion future de l'entreprise
    1. En combinaison avec la planification du marché de l'entreprise pour les 3 à 5 prochaines années et le plan de développement de nouveaux produits, il faut prévoir les changements de taille des pièces moulées qui pourraient être nécessaires. Si vous envisagez de développer l'activité de moulage d'équipements éoliens, vous devez étudier à l'avance la taille des moyeux, des pales et d'autres pièces moulées de grande taille (diamètre du moyeu de l'éolienne pouvant atteindre 3 à 5 mètres), afin de réserver suffisamment d'espace pour les mises à niveau de l'équipement ;
    1. Si les grandes pièces moulées ne sont réalisées qu'occasionnellement, il convient d'envisager la solution 3DPTEK 3DPTEK-J4000 Imprimantes de très grande taille (taille maximale de moulage 4000×2000×1500mm), ou stratégie d'impression "bloc de découpe de sable + assemblage combiné" (l'équipement 3DPTEK prend en charge l'impression partielle, ce qui facilite l'opération de découpe du bloc), réduisant ainsi les co?ts d'acquisition de l'équipement.
  3. Traitement des demandes de dimensions spéciales
    1. Pour les pièces moulées de dimensions spéciales telles que extra-longues, extra-larges, extra-minces, etc. (par exemple, les pièces moulées à arbre allongé avec un rapport d'aspect supérieur à 5:1, les pièces à parois minces avec une épaisseur inférieure à 5 mm), il est nécessaire d'examiner la précision d'impression et la stabilité de l'équipement en plus des dimensions de moulage. La technologie d'injection collée de 3DPTEK garantit que le moulage des pièces moulées de dimensions spéciales est effectué avec un degré élevé de précision de ±0,3 mm, évitant ainsi que les pièces moulées soient mises au rebut en raison de déviations des dimensions. éviter la mise au rebut de pièces moulées en raison d'écarts dimensionnels.

II. sélection des paramètres de l'équipement adaptés aux matériaux de coulée

Les différents matériaux de coulée (par exemple la fonte, l'aluminium moulé, l'acier moulé) ont des exigences différentes en matière de résistance au sable, de perméabilité à l'air et de production de gaz, qui doivent être adaptées aux paramètres de l'équipement et à la technologie des matériaux correspondants :

  1. Propriétés des matériaux et analyse de la demande en sable
    1. Pièces en fonte : en raison de la bonne fluidité de la fonte et du retrait de solidification modéré, la résistance du moule en sable doit être élevée (résistance à la traction ≥ 0,8MPa), afin d'éviter l'érosion et la rupture du moule en sable pendant la coulée. Le liant de résine furanique à haute résistance, associé à l'équipement 3DPTEK et au sable de silice, peut répondre aux exigences de l'impression au sable pour les pièces en fonte ;
    1. Coulée d'aluminium : la vitesse de solidification du liquide d'aluminium est rapide et facile à absorber l'air, nécessitant du sable avec une bonne perméabilité (valeur de perméabilité ≥ 150) et un faible dégazage (dégazage ≤ 15ml/g) pour éviter les défauts de porosité de coulée. Le processus de matériau open-source de 3DPTEK peut ajuster la formule de liant en fonction des besoins du liant, et adapté au sable céramique, au sable zircone et à d'autres sables à faible dégazage et à haute perméabilité, pour répondre à l'impression de sable de coulée d'aluminium.
  2. Compatibilité des matériaux et ajustement des paramètres
    1. L'imprimante 3D de sable 3DPTEK prend en charge une large gamme de sables de coulée (y compris le sable de quartz, le sable perlé, le sable de chromite, etc.), ce qui permet aux entreprises de choisir les matériaux de sable en fonction des matériaux de coulée et des considérations de co?t. Par exemple, lors de la production de pièces moulées en acier inoxydable haut de gamme, le sable de zirconium (résistant aux températures élevées et chimiquement stable) est utilisé avec le liant spécial de 3DPTEK pour améliorer les propriétés anti-lavage et antiadhésives du moule en sable ;
    1. Les paramètres de la buse (par exemple, le diamètre de l'orifice, la fréquence de pulvérisation) et les paramètres de chauffage et de durcissement (température et durée de durcissement) de l'équipement doivent être ajustés avec précision en fonction des caractéristiques du matériau sableux et du type de liant. Par exemple, lors de l'utilisation de sable de quartz à grain fin, il est nécessaire de réduire le diamètre de l'orifice de pulvérisation (par exemple, de 0,3 mm à 0,2 mm) et d'augmenter la fréquence de pulvérisation pour garantir que le liant couvre uniformément les particules de sable ; pour le liant thermodurcissable, il est nécessaire d'optimiser la courbe de chauffage et de durcissement (par exemple, augmenter la température de durcissement de 150℃ à 180℃, et prolonger le temps de durcissement de 30 secondes à 45 secondes), de manière à garantir que la résistance du type de sable est durcie.
  3. Application de nouveaux matériaux et assistance technique
    1. Avec l'augmentation de la demande de pièces moulées de haute performance et légères dans l'industrie du moulage, de nouveaux types de matériaux de sable (tels que le sable composite mélangé à de la poudre métallique et le sable nanomodifié) sont progressivement utilisés. 3DPTEK continue de rechercher et de développer de nouveaux processus de matériaux qui peuvent être adaptés aux besoins des entreprises et de personnaliser les solutions de matériaux pour les aider à réaliser rapidement l'application de nouveaux matériaux dans l'impression sur sable.

Avantages complets des imprimantes 3D 3DPTEK Sand

  1. Matrice des produits en taille réelle3DPTEK dispose d'une gamme complète d'imprimantes 3D à sable d'une taille allant de 1,6 mètre à 4 mètres. 3DPTEK-J1600Pro,3DPTEK-J1600Plus,3DPTEK-J1800,3DPTEK-J1800S,3DPTEK-J2500,3DPTEK-J4000 Une variété de modèles, tels que pour répondre aux différentes tailles des entreprises, différentes tailles de besoins d'impression de pièces moulées, pour éviter que les entreprises ne manquent des commandes en raison des limitations des spécifications de l'équipement.
  2. processus de matériaux à source ouverteIl permet aux utilisateurs d'ajuster la formule du liant et du sable en fonction des besoins afin de réduire le co?t des matériaux 20%-30%. En même temps, il est équipé d'un liant en résine, d'un agent de durcissement et d'un agent de nettoyage de haute performance pour assurer la qualité stable du moulage en sable et résoudre les problèmes de sélection des matériaux et d'optimisation du processus de l'entreprise.
  3. Technologie de moulage de haute précisionIl adopte la technologie du jet d'encre piézoélectrique, un système de jet d'encre à haute résolution et une formule de liant spéciale pour réaliser une impression de haute précision de ±0,3 mm, ce qui réduit efficacement la surépaisseur d'usinage des pièces moulées et améliore la qualité du moulage et l'efficacité de la production, et convient particulièrement aux secteurs de l'aérospatiale, de l'automobile et à d'autres industries ayant des exigences strictes en matière de précision.
  4. Moulage de surfaces flexibles sans bac à sableEn tant que 3DPTEK-J4000 L'utilisation innovante de la technologie de formage de surface flexible sans bac à sable, le soutien à l'impression locale, peuvent être rentables et efficaces pour réaliser la fabrication de moules en sable surdimensionnés, par rapport à l'impression traditionnelle en bac, l'empreinte de l'équipement est réduite de plus de 30%, et le co?t de l'impression est réduit de 15%-20%.

Grace à la stratégie de sélection ci-dessus basée sur la taille et le matériau de moulage, combinée aux avantages complets des imprimantes 3D à sable 3DPTEK, les entreprises peuvent faire correspondre avec précision les paramètres de l'équipement pour atteindre un haut degré de compatibilité entre les performances de l'équipement et les besoins de production, tout en améliorant la qualité des pièces moulées, en réduisant les co?ts de production et en renfor?ant la compétitivité sur le marché.

2025 砂型 3D 打印機選型指南:根據鑄件尺寸、材質選對設備參數最先出現在三帝科技股份有限公司。

]]>
Imprimante 3D de moules à cire industriels : le guide complet de la coulée à grande échelle en 2025, 80% Solutions de réduction du temps de cycle et d'amélioration de la précision http://www.ahjfzs.com/fr/blogs/industrial-grade-wax-mold-3d-printer-2025-large-casting-guide/ Wed, 20 Aug 2025 09:21:38 +0000 http://www.ahjfzs.com/?p=2365 Dans le domaine du moulage à grande échelle (pales de turbines aérospatiales, composants de moteurs automobiles, coques de machines lourdes), la fabrication traditionnelle de moules en cire a longtemps souffert d'un "temps de cycle long, d'une faible précision, d'une jonction complexe [...]

工業級蠟模 3D 打印機:2025 年大型鑄造全指南,縮短 80% 周期 + 提升精度方案最先出現在三帝科技股份有限公司

]]>
Dans le domaine de la coulée à grande échelle (aubes de turbines pour l'aérospatiale, composants de moteurs automobiles, bo?tiers de machines lourdes).Moulage traditionnel à la cireContraints par les trois problèmes majeurs que sont "la longueur du cycle, la faible précision et la difficulté à réaliser des structures complexes", il faut 2 à 3 semaines pour fabriquer à la main un ensemble de moules en cire d'aubes de turbine, avec une erreur de plus de 0,5 mm, et il n'est pas possible d'achever la conception des canaux de refroidissement internes. Il n'est pas possible d'achever la conception des canaux de refroidissement internes.Moules à cire industriels 3D Imprimante(L'émergence de la technologie SLS a complètement changé cette situation : de grands moules en cire peuvent être imprimés en 3 jours, avec une précision de ±0,1 mm, et des structures complexes qui ne sont pas possibles avec les processus traditionnels. Dans cet article, nous expliquerons la définition, les avantages, le flux de travail, les directives de sélection et les modèles 2025 des imprimantes 3D industrielles à cire, en fournissant aux fonderies des solutions pratiques pour la transformation technologique et la réduction des co?ts.

I. Qu'est-ce qu'une imprimante 3D industrielle à la cire ? Définition de base + comparaison avec les procédés traditionnels

L'imprimante 3D de qualité industrielle pour moules en cire est basée sur la technologie de la cire.Frittage sélectif par laser (SLS) TechnologieIl s'agit d'une machine industrielle destinée à la production de moules en cire de haute précision composés de poudre de cire de coulée / de poudre semblable à de la cire, qui sont fusionnés couche par couche et peuvent être utilisés directement pour la coulée de cire perdue à la cire perdue. Elle présente des avantages significatifs par rapport au procédé traditionnel de moulage à la cire et est particulièrement adaptée aux scénarios de moulage de grande taille (dimensions des pièces supérieures à 500 mm) :

dimension de comparaisonImprimante 3D pour moules à cire industrielsProcessus traditionnel de moulage de la cire (fait à la main / CNC)
cycle de production3-7 jours (grands modèles en cire)2-4 semaines
Précision dimensionnelle±0,1 mm±0,5-1mm
Réalisation de structures complexesImpression aisée de canaux de refroidissement internes et de structures en nid d'abeille à parois mincesLes multiples jeux de moules en cire doivent être démontés et sont sujets à des erreurs d'assemblage.
co?t du travailImpression automatisée, une personne peut utiliser plusieurs machinesDépendance à l'égard des artisans qualifiés, co?ts de main-d'?uvre élevés 300%
Utilisation des matériaux90% Ci-dessus (poudre de cire non frittée recyclable)60%-70% (coupe / déchets manuels)
Itération de la conceptionLes fichiers CAD peuvent être réimprimés en quelques heures après modification.Re-moulage nécessaire, long délai d'exécution

Les 4 principaux avantages des imprimantes 3D de moules en cire de qualité industrielle pour les fonderies (résoudre les problèmes de l'industrie)

1. temps de cycle réduit 80%, réponse rapide aux exigences de la commande

Il faut trois semaines pour fabriquer un moule en cire d'un gros bloc moteur automobile à l'aide des procédés traditionnels, mais les imprimantes 3D de qualité industrielle peuvent le faire en seulement trois jours. Une fonderie aérospatiale a utilisé le LaserCore-5300 pour imprimer un modèle en cire d'une pale de turbine, de la conception au produit fini, en 48 heures, soit une réduction de 80% par rapport au processus traditionnel, et une compression du cycle de production d'essai d'un nouveau produit de 3 mois à 1 mois, saisissant ainsi la première opportunité sur le marché.

2. 5 fois plus précis, réduisant les rejets de moulage

L'imprimante 3D de moule en cire de qualité industrielle a une précision de ±0,1 mm et une finition de surface de Ra≤1,6μm, ce qui peut réduire le processus de post-traitement de la coulée. En raison de la grande erreur du moule en cire fabriqué par le processus traditionnel, le taux de rebut de la coulée est supérieur à 15% ; tandis que le moule en cire imprimé en 3D réduit le taux de rebut à moins de 5%, une fonderie produit de grands moulages de vannes, et réduit la perte de rebut de 800 000 RMB par an.

3. franchir les limites structurelles pour réaliser des moulages difficiles

Il n'est pas nécessaire de tenir compte des problèmes de "démoulage", ce qui permet des conceptions impossibles à réaliser avec les procédés conventionnels, en particulier pour la fabrication haut de gamme :

  1. Aérospatiale :Canaux de refroidissement multicouches à l'intérieur des pales de la turbine(Le processus traditionnel nécessite le démontage de 5 jeux de moules en cire, alors que l'impression 3D permet de former le moule en une seule fois, sans erreur d'assemblage) ;
  2. Voitures :Couloirs intégrés au bloc moteur(Réduction du processus de post-forage et augmentation de l'efficacité des fluides de 10%) ;
  3. Machines lourdes :Structure en nid d'abeille à paroi mince pour les grandes coquilles(épaisseur de paroi aussi faible que 2 mm, réduction de poids 20%, augmentation de la résistance 15%).

4. réduction des co?ts à long terme 40%, compensant l'investissement dans l'équipement

Malgré l'investissement initial élevé (plus de 50 000 dollars) pour une imprimante 3D de qualité industrielle moulée dans la cire, les avantages en termes de co?ts sont considérables sur l'ensemble du cycle de vie :

  • éliminer les co?ts des moules : les grands moules à cire CNC traditionnels co?tent plus de 200 000 RMB, ce qui peut être complètement éliminé grace à l'impression 3D ;
  • Réduction du co?t de la main-d'?uvre : une personne peut utiliser 3 machines, ce qui réduit la main-d'?uvre de 80% par rapport au processus traditionnel ;
  • Réduction des pertes par rebut : l'amélioration de la précision a permis de réduire le taux de rebut des pièces coulées de 15% à 5%, ce qui représente une économie de plus de 500 000 RMB en co?ts de matériaux par an.

Flux de travail de l'impression 3D de cire industrielle : 6 étapes de la conception au moule en cire (pour la coulée à grande échelle)

Le processus industriel d'impression 3D de cire est hautement automatisé et ne nécessite pas d'intervention humaine complexe. Les principales étapes sont les suivantes (par exemple, le moulage en cire d'une grande pale de turbine) :

  1. Conception et optimisation numériqueLe modèle 3D du moule en cire est construit dans SolidWorks/AutoCAD, le retrait est réservé en fonction des propriétés du métal coulé (par exemple, l'acier doit être agrandi de 1%-2%), la structure de la carotte et de l'évent est con?ue et exportée sous la forme d'un fichier au format STL ;
  2. Paramétrage de l'appareilChargez la poudre de cire de coulée dans une imprimante (par exemple LaserCore-6000) et réglez les paramètres : épaisseur de la couche 0,08-0,35 mm, puissance du laser 55-300 W, taux de moulage 80-300 cm3/h, afin de vous assurer que l'imprimante est adaptée à l'impression de grands modèles en cire ;
  3. l'impression automatiséeLes grands moules en cire (par exemple, 1050 x 1050 x 650 mm) sont imprimés en 10 à 20 heures sans intervention humaine et peuvent être imprimés sans surveillance pendant la nuit ;
  4. Nettoyage après l'impressionUne fois le moule en cire terminé, retirez-le de la cavité et soufflez l'excès de poudre de cire sur la surface à l'aide d'air comprimé (cette poudre de cire peut être recyclée directement) et vérifiez que le moule en cire ne présente ni trous ni fissures (le taux de défauts des moules en cire imprimés en 3D est inférieur à 1%) ;
  5. Assemblage de moules en cire (production de masse)En cas de coulée par lots, les moules en cire individuels sont attachés à un "arbre à cire" afin d'accro?tre l'efficacité du processus de coulée ;
  6. Convient à la fonte à la cire perdueLe moule en cire est immergé dans une boue céramique pour former une coque en céramique résistante aux hautes températures, qui est ensuite br?lée dans un four à 700-1000°C pour éliminer le moule en cire (la teneur en cendres du moule en cire d'impression 3D est <0,1%, et la combustion est complète sans résidu), de sorte que le métal peut être versé à l'intérieur.

Comment choisir une imprimante 3D à cire de qualité industrielle pour une fonderie ? 4 critères de sélection essentiels

1) Priorité à l'espace de moulage : convient aux besoins de moulage importants

Les grandes pièces moulées (telles que les blocs moteurs automobiles, les cadres aérospatiaux) dont les dimensions sont comprises entre 500 et 1000 mm doivent être choisies avec un espace de moulage de ≥ 500 × 500 × 500 mm :

  • Pour les petites et moyennes fonderies (taille des pièces 500-700 mm) : des modèles avec un espace de moulage de 700 x 700 x 500 mm (par exemple LaserCore-5300) sont disponibles ;
  • Grandes fonderies (taille des pièces 700-1000mm) : nous recommandons un modèle avec un espace de moulage de 1050 x 1050 x 650mm (par exemple LaserCore-6000).

2) Verrouillage de type technologique SLS : assurer la solidité et la précision des moules en cire

La technologie SLS fritte la poudre de cire par laser, les moules en cire ont une densité élevée (≥0,98g/cm3) et une grande résistance (résistance à la flexion ≥15MPa), qui peuvent résister aux forces externes pendant le revêtement de la pate céramique et la manipulation, et éviter la déformation. Les moules en cire fabriqués à l'aide d'autres technologies (par exemple FDM) sont peu résistants, s'ab?ment facilement et ne conviennent pas à la coulée à grande échelle.

3. se concentrer sur les paramètres essentiels : précision, vitesse et compatibilité des matériaux

  • précisLes modèles de ±0,1 mm permettent de respecter les dimensions de la pièce coulée et de minimiser les opérations de post-traitement ;
  • Taux de formationLa priorité est donnée aux modèles de plus de 200 cm3/h (par exemple AFS LaserCore-6000 jusqu'à 300 cm3/h) afin d'accro?tre l'efficacité de la production de grands moules en cire ;
  • Compatibilité des matériauxCires de coulée : Une large gamme de cires de coulée (cires de coulée à faible teneur en cendres, cires à haute température) est nécessaire pour la coulée de différents alliages (alliages d'aluminium, acier, alliages de titane).

4. logiciels et services : rendre la transition moins difficile

  1. Le logiciel doit être compatible avec les principaux formats de CAO (STL/OBJ) et être accompagné d'une simulation de coulée (optimisation de la structure du moule en cire et réduction des défauts) ;
  2. Les prestataires de services sont tenus de fournir une assistance complète : formation gratuite de l'opérateur (pour s'assurer que l'opération est ma?trisée en 3 jours), installation et mise en service de l'équipement, service après-vente 24 heures sur 24 (service domestique porte-à-porte ≤ 24 heures).

V. Recommandation de modèles populaires d'imprimantes 3D de moules en cire de qualité industrielle en 2025 (adaptés aux différents besoins de moulage)

Sur la base des réactions de l'industrie et des cas d'application réels, les trois modèles suivants en 2025 sont exceptionnels dans le domaine de la grande fonderie, couvrant les scénarios d'entrée et de haut de gamme :

modèlesEspace de formage (mm)Type de technologieprécisTaux de formationScénarios applicablesPoints forts
AFS-500 (entrée de gamme)500 x 500 x 500SLS±0,1 mm80-150cm3/hOutils industriels, pièces moulées de petite et moyenne taille (jusqu'à 500 mm)Rentable, faible consommation d'énergie (15KW), adapté à la production d'essai des petites et moyennes fonderies.
LaserCore-5300 (milieu et haut de gamme)700 x 700 x 500SLS±0,1 mm150-250cm3/hPales de turbines aérospatiales, pièces automobiles (500-700 mm)Itération rapide, précision stable, adaptée à l'impression multi-matériaux
LaserCore-6000 (haut de gamme)1050 x 1050 x 650SLS±0,1 mm250-300cm3/hGrands blocs de moteurs automobiles, cadres aérospatiaux (700-1000 mm)Très grand espace de moulage, grande efficacité dans la production de masse, adapté aux fonderies à forte production

Analyse des points forts du modèle

  1. AFS-500Faible co?t d'entrée, facile à utiliser, une seule personne peut gérer plusieurs machines, convient aux petites et moyennes fonderies qui essaient l'impression 3D pour la première fois, aux moules en cire de petite et moyenne taille pour les outils industriels, les vannes, etc ;
  2. LaserCore-5300Les moules en cire pour les pales de turbine sont largement utilisés dans l'industrie aérospatiale et présentent une finition de surface élevée, ce qui élimine la nécessité d'un post-polissage et augmente le rendement des pièces coulées à plus de 95% ;
  3. LaserCore-6000Cette machine est l'une des rares en Chine à pouvoir imprimer des moules en cire de 1050 mm et à pouvoir embo?ter 20 moules en cire de petite et moyenne taille (par exemple, des pièces automobiles) en une seule fois, ce qui augmente le taux d'utilisation de la machine de 60%.

Problèmes courants de l'impression 3D de moules en cire industriels + solutions d'experts

1. investissement initial élevé dans l'équipement ? -- L'investissement progressif réduit les risques

Les petites et moyennes fonderies peuvent acheter des modèles d'entrée de gamme (par exemple AFS-500) pour le moulage en cire de pièces à forte valeur ajoutée (par exemple des valves de précision), récupérer rapidement les co?ts grace à des commandes à forte marge, puis passer à des modèles plus haut de gamme au bout d'un ou deux ans.

2. une combustion incomplète des moules en cire conduisant à des moulages défectueux ? -- Optimisation des paramètres de frittage et de cuisson

  1. Lors de l'impression : réglez la puissance du laser (55-80W) pour que la densité du moule en cire soit ≥0,98g/cm3 et pour réduire la porosité interne ;
  2. Cuisson : la température du four est progressivement augmentée de 700°C à 1000°C et maintenue pendant 2 à 3 heures afin de s'assurer que les moules en cire sont complètement vaporisés (ce qui peut être vérifié par le changement de poids des coquilles en céramique).

3. le recyclage de la poudre de cire est difficile, les déchets de matériaux ? -- Configurer un système de recyclage automatisé

En choisissant un équipement de recyclage de la poudre de cire doté d'une fonction de criblage et de séchage automatique, la poudre de cire non filtrée peut être réutilisée directement après le traitement, et le taux d'utilisation des matériaux est passé de 90% à plus de 95%, ce qui permet d'économiser 200 000 yuans de co?ts de matériaux par an.

4. l'équipe n'est pas compétente en matière d'exploitation, ce qui affecte la productivité ? -- Privilégier l'option "équipement + formation" en tant que service tout-en-un.

Choisissez un prestataire de services qui propose des formations gratuites (comme la marque AFS), 1 à 1 pour apprendre aux opérateurs à ma?triser le fonctionnement quotidien de l'équipement, le dépannage, afin d'assurer le fonctionnement normal de l'équipement.

VII. conclusion : l'imprimante 3D de moules en cire de qualité industrielle, un équipement indispensable pour la transformation de la fonderie

Dans l'industrie de la fonderie à grande échelle, de plus en plus concurrentielle, "haute précision, temps de cycle rapide, faible co?t" est devenu une compétence essentielle. Les imprimantes 3D à cire de qualité industrielle aident les fonderies à s'affranchir des contraintes des processus traditionnels en réduisant le temps de cycle de 80%, en augmentant la précision de 5 fois et en réduisant les co?ts de 40% sur le long terme. Les imprimantes 3D de qualité industrielle aident les fonderies à s'affranchir des contraintes des processus traditionnels.

En 2025, la commercialisation de modèles tels que la série LaserCore permettra de passer rapidement de la conception au moule en cire pour des industries telles que l'aérospatiale, l'automobile et la machinerie lourde. Pour les fonderies, le choix de la bonne imprimante 3D à cire industrielle permettra non seulement de réduire les co?ts et d'accro?tre l'efficacité, mais aussi de débloquer des commandes de moulage difficiles et de prendre pied dans la fabrication haut de gamme - la valeur fondamentale de l'impression 3D à cire industrielle dans l'industrie de la fonderie du futur.

工業級蠟模 3D 打印機:2025 年大型鑄造全指南,縮短 80% 周期 + 提升精度方案最先出現在三帝科技股份有限公司。

]]>
Imprimante 3D de moulage en sable de 4 mètres de large : débloquer la fabrication de pièces de fonderie de grande taille d'ici 2025, 80% Cycle Time Reduction + Cost Reduction Solutions http://www.ahjfzs.com/fr/blogs/4-meter-class-large-sand-mold-casting-3d-printer/ Wed, 20 Aug 2025 07:58:59 +0000 http://www.ahjfzs.com/?p=2360 Dans le domaine de la fabrication de pièces moulées de grande taille (par exemple, blocs moteurs, coques de machines industrielles, composants aérospatiaux), le procédé traditionnel au sable a longtemps été soumis à des "limitations de taille, des temps de cycle longs, des co?ts élevés [...]

4 米級大型砂型鑄造 3D 打印機:2025 年解鎖大型鑄件制造,縮短 80% 周期 + 降本方案最先出現在三帝科技股份有限公司

]]>
Dans le domaine de la fabrication de pièces moulées de grande taille (par exemple, blocs moteurs, carters de machines industrielles, composants aérospatiaux).Procédé traditionnel de moulage au sableContrainte par les trois principaux problèmes que sont "la limitation de la taille, le long délai de mise en ?uvre et le co?t élevé", la fabrication de moules en sable de 4 mètres prend plusieurs mois et nécessite l'assemblage manuel de plusieurs noyaux de sable, ce qui se traduit par un taux de rebut de plus de 15%.Imprimante 3D de coulée de sable à grande échelle de 4 mètres(par) 3DPTEK-J4000 Grace à l'émergence de cet équipement, ce dilemme peut être complètement résolu : l'impression en une seule fois pour compléter le sable global de 4 mètres, raccourcir le cycle du 80%, réduire le co?t du 40%, mais aussi réaliser le processus traditionnel qui ne peut pas être complété par une structure interne complexe. Dans ce document, nous analyserons les paramètres fondamentaux, les avantages, les scénarios d'application et la valeur industrielle de cet équipement, et nous fournirons des lignes directrices de transformation technique pour les entreprises de fabrication lourde.

Tout d'abord, les 4 principaux points faibles du processus traditionnel de sable à grande échelle, comment faire face à l'impression 3D de 4 mètres ?

La fabrication traditionnelle de sable à grande échelle (plus de 2 mètres) nécessite de multiples étapes de "fabrication du moule - désassemblage du noyau de sable - assemblage manuel", ce qui constitue un problème insoluble. L'impression 3D de sable de 4 mètres constitue une percée complète grace à un "processus intégré de moulage et numérique". L'impression 3D de sable de 4 mètres est une percée grace au "processus intégré de moulage et de numérisation" :

Type de point de douleurStatut de l'artisanat traditionnelSolution d'impression 3D sur sable de 4 mètres
long délai d'exécution4 à 8 semaines pour produire un moule en sable de 4 mètres (2 à 4 semaines pour le moulage seul)2 à 5 jours pour réaliser l'ensemble de l'impression sur sable, ce qui réduit la durée du cycle complet 80%
Limites structurellesLes canaux internes complexes, les structures à topologie optimisée nécessitent plus de 10 jeux de noyaux de sable pour être démontés et sont sujets à des erreurs d'assemblage.Impression de structures complexes en une seule pièce, sans démontage, erreur ≤ 0,3 mm
co?t élevéLes grands moules métalliques co?tent plus de 500 000 dollars et nécessitent 10 personnes par jour pour l'assemblage manuel.Pas de co?ts de moulage, l'impression automatisée réduit la main-d'?uvre 80%
Taux de rebut élevéLes lacunes dans la jonction des noyaux de sable entra?nent des défauts de coulée et un taux de rebut 15%-20%Moulage en sable sans soudure + optimisation de la simulation pour réduire le taux de rebut à moins de 5%
4 mètres, grande imprimante 3D à sable

Deuxièmement, analyse du c?ur de l'imprimante 3D à sable de 4 mètres de diamètre : paramètres et avantages techniques de la 3DPTEK-J4000

1) Paramètre clé : répondre aux exigences d'un scénario complet pour les grandes pièces moulées

3DPTEK-J4000 En tant qu'équipement de référence dans l'industrie, il ne s'agit pas d'un simple agrandissement d'une petite imprimante, mais d'une conception exclusive pour la fabrication de sable à grande échelle avec les paramètres de base suivants :

  1. Taille maximale de moulageLes dimensions sont les suivantes : 4000 mm x 2000 mm x 1000 mm (peut imprimer un motif de sable entier de 4 mètres de long et de 2 mètres de large sans raccord) ;
  2. Type de processusInjection de liant par jet d'encre (3DP), convient aux sables de coulée spéciaux tels que le sable de quartz, le sable de céramique et le sable de céramique ;
  3. Précision et résolutionLes produits de l'industrie de l'emballage et de l'étiquetage : précision dimensionnelle ±0,3 mm, résolution de la buse 400 dpi, finition de surface jusqu'à Ra6,3μm ;
  4. épaisseur de la couche et efficacitéL'épaisseur de la couche peut être réglée entre 0,2 et 0,5 mm, et 2 à 3 séries de motifs de sable de taille moyenne (par exemple, des motifs de corps de pompe de 2 mètres de long) peuvent être imprimées en une seule journée ;
  5. Utilisation des matériaux100% de sable non durci recyclé avec moins de 5% de pertes de matériaux.

2. technologie de base : "moulage de zones flexibles sans sable" pour réduire les co?ts

Les machines conventionnelles de moulage en sable de 4 mètres nécessitent la fixation de grands bacs à sable, et une seule empreinte doit être remplie avec des dizaines de tonnes de sable, ce qui est extrêmement co?teux. Et 3DPTEK-J4000 Une percée a été réalisée avec la "Sandless Flexible Area Moulding Technology" (technologie de moulage sans sable de zones flexibles) :

  • élimine le besoin d'un bac à sable fixe, ajuste dynamiquement la surface du lit de sable à la taille du motif de sable et réduit la quantité de sable 70% utilisée ;
  • élimination de l'investissement dans l'infrastructure des grands bacs à sable (les bacs à sable traditionnels co?tent plus de 200 000 yuans) ;
  • Le co?t d'achat de l'équipement est identique à celui de la classe de 2,5 mètres, avec un retour sur investissement supérieur de 50%.

Les 5 principaux avantages de l'impression 3D sur sable de 4 mètres : un coup de pouce direct à la compétitivité des entreprises

1. temps de cycle plus court 80%, saisir l'opportunité du marché

Il faut 6 semaines pour fabriquer un moule en sable de bloc moteur de 4 mètres par le processus traditionnel, mais 3DPTEK-J4000 ne prend que 3 jours pour achever l'impression, et le cycle complet, de la conception à la livraison du moulage, est compressé de 3 mois à 1 mois. Une entreprise de machinerie lourde l'a utilisé pour fabriquer un moule en sable pour une grande bo?te de vitesses. De nouveaux produits ont été mis sur le marché deux mois avant la date prévue, ce qui lui a permis de s'emparer de la part du segment de marché 30%.

2. vers un moulage intégré "surdimensionné + complexe

Il n'est pas nécessaire de prendre en compte les contraintes de "stripping" et de "splicing" des processus conventionnels, ce qui permet des conceptions difficiles :

  • Aérospatiale : un carter de turbine de 4 mètres de long pour l'usine de production d'électricité de l'Union européenne.Canaux de refroidissement internes multicouches(Le processus traditionnel nécessite le fractionnement de 12 noyaux de sable, qui sont moulés en une seule fois par impression 3D) ;
  • énergie : bride d'éolienne de 3 mètres de diamètreStructures de réduction de poids optimisées sur le plan topologique(Réduction de poids 20%, augmentation de la résistance 15%) ;
  • Dans le domaine des machines industrielles : des corps de pompe de 4 mètres de long pour la production d'électricité.Structure de la vis sans fin(Pas de lacunes dans l'épissage, 8% d'augmentation de l'efficacité des fluides).

3. réduction des co?ts à long terme 40%, délai de récupération court

Malgré l'investissement initial élevé dans l'équipement, l'avantage en termes de co?ts est significatif lorsqu'il est calculé sur l'ensemble du cycle de vie :

  1. économiser le co?t des moules : les grandes pièces moulées doivent remplacer 2 à 3 jeux de moules par an ; l'impression 3D peut être complètement éliminée, ce qui permet d'économiser plus d'un million de yuans par an ;
  2. Réduction des pertes par rebut : une fonderie produisant du sable pour grandes vannes a vu son taux de rebut passer de 181 à 41 tonnes, ce qui lui a permis de réduire ses pertes annuelles de 500 000 yuans ;
  3. Inventaire numérique : les modèles de sable sont stockés sous forme de fichiers CAO, ce qui évite d'empiler des moules physiques dans l'entrep?t et permet d'économiser 100 m2 d'espace de stockage.

4. prendre en charge la production bimode "batch + custom".

L'espace de moulage de 4 mètres permet non seulement l'impression de grands moules en sable, mais aussi l'imbrication de petites pièces pour la production en série :

  1. 200 petits noyaux de corps de pompe peuvent être imbriqués en un seul tirage (les processus traditionnels nécessitent une production par lots) ;
  2. Prise en charge de l'impression mixte "1 jeu de grands motifs de sable + lot de petits noyaux de sable", ce qui augmente l'utilisation de l'équipement de 60% ;
  3. Réponse rapide aux besoins de personnalisation, les modifications de la conception ne nécessitant qu'une mise à jour du fichier CAO, sans qu'il soit nécessaire de procéder à une nouvelle modélisation.

5. respecter les exigences environnementales, contribuer à la production écologique

Les réglementations environnementales mondiales sont de plus en plus strictes (par exemple, la politique chinoise du "double carbone", les droits d'émission de carbone de l'UE), et l'impression 3D sur sable de 4 mètres répond aux besoins environnementaux par le biais de deux technologies principales :

  1. Utilisation de liants à faible teneur en COV (émissions inférieures à la norme nationale 60%) pour réduire la pollution de l'air ;
  2. Le sable 100% est recyclé et réutilisé, ce qui permet de réduire les émissions de déchets solides de plus de 100 tonnes par an, conformément aux exigences de la certification "usine verte".

Quatrièmement, 4 mètres d'impression 3D de sable, 4 grands scénarios d'application industrielle (avec des cas réels)

1) Véhicules automobiles et utilitaires : des composants essentiels pour les camions à énergie nouvelle

  • Application : camion lourd à énergie nouvelle de 4 mètres de longBo?tier de moteur intégréLe moule en sable d'un gros bloc moteur ;
  • Exemple : une entreprise automobile utilise 3DPTEK-J4000 L'impression du moule en sable de la coque du moteur permet de réduire le temps de cycle de 4 semaines à 3 jours, et le moulage ne présente aucun défaut au niveau de la paroi mince (2,5 mm), ce qui permet de réduire le poids du moteur de 30% et d'augmenter l'autonomie de 100 km.

2. aérospatiale et défense : grands composants structurels légers

  • Application : 4 mètres de longEnveloppes de turbines de moteurs aéronautiquesLanceur de missiles Tank Sand Pattern ;
  • Avantage : l'impression intégrée permet d'éviter les erreurs d'épissage des noyaux de sable, la précision dimensionnelle du moulage atteint le niveau CT7, ce qui permet de répondre aux exigences de l'aérospatiale en matière de "zéro défaut".

3) Machines industrielles et secteur de l'énergie : composants de base pour les équipements lourds

  • Application : 4 mètres de longGrand corps de pompe Corps de vis sans finLe moulage en sable de bo?tiers de multiplicateurs d'éoliennes de 3 mètres de diamètre ;
  • Cas : une entreprise de l'industrie lourde l'utilise pour imprimer le motif de sable du corps de la pompe, la finition de la surface du canal de fluide est améliorée de 50%, l'efficacité du corps de la pompe est améliorée de 75% à 82%, et la consommation d'énergie annuelle est économisée de 1,2 million de yuans.

4. dans le domaine de l'art et de l'architecture : sculptures en bronze surdimensionnées

  • Demande : sculpture en bronze de 60 mètres de longMoules à sable segmentés(par exemple, la sculpture des "Neuf Chevaux" à Nanjing) ;
  • Avantages : élimine le besoin de grandes moulures en bois, permet des textures artistiques complexes et réduit le cycle de production des sculptures de 1 an à 3 mois.

V. Choisir la bonne solution : les services intégrés "équipement + écologique" de 3DPTEK

Le succès de l'impression 3D sur sable de 4 mètres nécessite non seulement un équipement de haute qualité, mais aussi un soutien écologique complet. 3DPTEK fournit des solutions "de bout en bout" pour réduire la difficulté de la transformation de l'entreprise :

  • Matériaux exclusifsPlus de 30 formulations de liants de sable (par exemple, liant à faible viscosité pour la coulée d'alliages d'aluminium, liant résistant aux températures élevées pour la coulée d'acier) pour garantir la qualité de la coulée ;
  • logiciel intelligentIl est équipé d'un système de simulation de coulée, qui permet de simuler l'écoulement du liquide métallique, la contraction du refroidissement, d'optimiser à l'avance la conception du sable et de réduire le co?t des essais et des erreurs ;
  • Service complet de traitementLes services d'assistance à la production sont complets, depuis la modélisation CAO jusqu'au post-traitement des pièces moulées, en passant par l'impression au sable, et la formation gratuite des opérateurs (dans les trois jours suivant la ma?trise de l'équipement) ;
  • le service après-venteService porte-à-porte 24 heures sur 24 à domicile, 5 centres de service à l'étranger (Allemagne, états-Unis, Inde, etc.), cycle d'arrivée des pièces détachées ≤ 72 heures, pour assurer le fonctionnement du matériel tout au long de l'année ≥ 95%.

Tendances futures de l'impression 3D de sable à grande échelle en 2025 : vers le "plus grand, plus intelligent".

1. des percées continues en matière de taille : des dispositifs de 6 à 10 mètres sont en cours de développement

3DPTEK a entamé la recherche et le développement d'une imprimante à sable de 6 mètres de long, qui pourra à l'avenir imprimer des "hélices de navire de 8 mètres de long" et des "coques d'équipement nucléaire de 10 mètres de diamètre", éliminant ainsi complètement les défauts des grandes pièces moulées.

2) IA+impression 3D : permettre un contr?le intelligent de l'ensemble du processus

Système d'intelligence artificielle intégré pour une réalisation automatisée :

  • Optimisation de la conception du sable (génération automatique de la structure optimale en fonction du matériau de coulée et des dimensions) ;
  • Contr?le du processus d'impression (ajustement en temps réel du volume d'injection de liant pour éviter les fissures de sable) ;
  • Prédiction de la qualité (les algorithmes d'IA prévoient les défauts éventuels des pièces moulées et ajustent le processus à l'avance).

3) Impression de matériaux composites : élargissement des limites d'application

à l'avenir, la machine pourra réaliser des impressions composites "sable + poudre métallique", en imprimant des revêtements métalliques résistants aux hautes températures sur des pièces clés du moule en sable (par exemple, la carotte de coulée).Alliage de titane, acier à très haute résistanceMoulage d'alliages réfractaires, élargissement de l'application dans le domaine de l'équipement haut de gamme.

Conclusion : l'impression 3D de sable de 4 mètres ouvre une nouvelle ère pour la fabrication de pièces de grande taille.

Pour les entreprises de fabrication lourde, l'imprimante 3D de moulage en sable de 4 mètres de large n'est plus une "nouveauté technologique" mais une "nécessité pour améliorer la compétitivité" - elle s'affranchit des contraintes de taille et de temps de cycle des processus traditionnels pour réaliser la triple percée "grande échelle + complexité + faible co?t". Elle s'affranchit des contraintes de taille et de temps de cycle des procédés traditionnels pour réaliser la triple percée "grande échelle + complexité + faible co?t".

La commercialisation d'équipements tels que le 3DPTEK-J4000 a permis d'accélérer le passage de la conception à la coulée dans les secteurs de l'automobile, de l'aérospatiale et des machines industrielles. à l'avenir, avec la recherche et le développement d'équipements de classe 6-10 mètres et l'intégration de la technologie de l'IA, la fabrication de grandes pièces moulées entrera dans une nouvelle phase de "numérisation complète, zéro défaut et écologisation", et les entreprises qui prendront l'initiative de mettre en place cette technologie auront un avantage absolu dans la concurrence du marché.

4 米級大型砂型鑄造 3D 打印機:2025 年解鎖大型鑄件制造,縮短 80% 周期 + 降本方案最先出現在三帝科技股份有限公司。

]]>
Impression 3D sur sable : réinventer le moulage des métaux d'ici 2025 grace à l'analyse de la solution 80% de réduction du temps de cycle et des co?ts http://www.ahjfzs.com/fr/blogs/sand-mold-3d-printing-technology-transforming-the-metal-casting-industry-by-2025/ Wed, 20 Aug 2025 06:17:48 +0000 http://www.ahjfzs.com/?p=2358 Comment la technologie d'impression 3D sur sable réinvente-t-elle le moulage des métaux ? 2025 Analyse de ses principaux avantages : raccourcissement du temps de cycle des moules en sable 80%, réduction du co?t des moules 40%, dépassement des limites des structures complexes, avec les paramètres de l'équipement 3DPTEK et les cas de l'industrie automobile / aérospatiale, aidant ainsi les fonderies à se transformer.

砂型 3D 打印技術:2025 年重塑金屬鑄造行業,縮短 80% 周期 + 降本方案解析最先出現在三帝科技股份有限公司。

]]>
Dans l'industrie de la fonte des métaux, leMoulage au sable conventionnelLongtemps limitée par les trois principales difficultés que sont "la longueur du cycle, la faible complexité et le co?t élevé", la fabrication d'un ensemble de moules en sable complexes prend des semaines et il est difficile de réaliser des conceptions complexes telles que des canaux de refroidissement internes et des structures à parois minces. Etmoule en sable 3D technologie d'impression(L'émergence de la technologie de jet de liant (en tant que noyau) a complètement changé le statu quo : il ne faut que 24 à 48 heures entre le modèle CAO et le modèle de sable fini, et la structure complexe est formée en une seule fois, et le taux d'utilisation des matériaux est augmenté de plus de 90%. Cet article analyse en détail le principe de l'impression 3D sur sable, ses principaux avantages, ses applications industrielles et la sélection de l'équipement 3DPTEK, afin de fournir aux fonderies un guide pratique sur la transformation technique, la réduction des co?ts et l'efficacité.

I. Qu'est-ce que l'impression 3D en sable ? Définition de base + caractéristiques du processus (distinction avec le moulage traditionnel)

L'impression 3D sur sable est basée surPrincipes de la fabrication additiveLa technologie industrielle qui transforme les modèles CAO numériques directement en moules / noyaux en sable solide. Au lieu du processus traditionnel de "moulage - tournage du sable", le sable est déposé couche par couche par l'imprimante et durci par pulvérisation du liant. Le processus de noyautage est le suivantTechnologie de projection de liantLes modèles J1600Pro, J2500 et J4000 de 3DPTEK, par exemple, offrent des avantages significatifs par rapport au moulage conventionnel :

dimension de comparaisonImpression 3D sur sableProcessus traditionnel de fabrication des moules
cycle de production24-48 heures2-4 semaines
Réalisation de structures complexesImpression aisée des canaux internes et des pièces à parois mincesDifficile à réaliser, nécessité de séparer plusieurs carottes de sable
Co?ts d'outillagePas besoin de moules physiques, co?t 0Nécessité d'un moulage bois/métal sur mesure, co?t élevé
Utilisation des matériaux90% ou plus (sable non durci recyclable)60%-70% (beaucoup de déchets de coupe)
Flexibilité de la conceptionPrise en charge de la modification en temps réel des modèles CAO pour une itération rapideLa modification de la conception nécessite une nouvelle modélisation et de longs délais.

Deuxièmement, la fonderie doit utiliser l'impression 3D sur sable pour quatre raisons essentielles (pour résoudre les problèmes de l'industrie)

1. temps de cycle réduit 80%, réponse rapide aux exigences de la commande

Alors que les procédés traditionnels prennent de 2 à 4 semaines pour produire des moules en sable complexes (p. ex. corps de pompe, corps de turbine), l'impression 3D sur sable ne prend qu'un à deux jours. Particulièrement adapté pourMoulage de prototypes, personnalisation de petites séries, production de pièces de rechange d'urgenceScénario -- Une fonderie utilise le 3DPTEK J1600Pro pour imprimer des modèles de sable pour des corps de pompe, de la conception à la livraison, en seulement 36 heures, soit une réduction de 80% par rapport au processus traditionnel, ce qui permet de mettre les produits sur le marché deux semaines plus t?t.

2. dépasser les limites structurelles et réaliser des moulages difficiles

L'impression 3D de sable élimine la nécessité de penser aux questions de "libération", ce qui facilite la création de modèles qui seraient impossibles à réaliser avec les processus traditionnels :

  1. dans le domaine de l'aérospatialeCanaux de refroidissement internes des aubes de turbines(Le processus traditionnel nécessite le démontage de plus de 5 jeux de noyaux de sable, ce qui est susceptible d'entra?ner des erreurs d'assemblage) ;
  2. AutomobileBo?tier de moteur léger à parois minces(L'épaisseur de la paroi peut être aussi faible que 2 mm, le type de sable conventionnel étant susceptible de se fracturer) ;
  3. machines industriellesBo?tier de bo?te de vitesses à passages d'huile intégrés(Réduction du processus de post-per?age et du taux de rebut).

3. réduction des co?ts à long terme 40%, compensant les co?ts d'entrée des équipements

Malgré l'investissement initial plus élevé dans les imprimantes 3D à sable, l'avantage en termes de co?ts est significatif lorsqu'il est calculé sur l'ensemble du cycle de vie :

  • éliminer le co?t du moulage (un grand jeu de moules en métal co?te plus de 100 000 dollars, ce qui peut être complètement éliminé grace à l'impression 3D) ;
  • Réduction du taux de rebut (optimisation de la conception numérique et de la simulation, le taux de rebut de la coulée est passé de 15% à moins de 5%) ;
  • Réduction des co?ts de main-d'?uvre (impression automatisée, pas besoin d'assembler manuellement plusieurs carottes de sable, 50% de main-d'?uvre en moins).

4. respecter les exigences en matière de protection de l'environnement et réaliser une production écologique

Alors que les réglementations environnementales sont de plus en plus strictes à l'échelle mondiale (par exemple, les normes REACH de l'UE), l'impression 3D sur sable répond au besoin de protection de l'environnement par le biais de deux technologies principales :

  • adoptionLiant à faible émission(formulation exclusive de 3DPTEK avec des émissions de COV inférieures à la norme industrielle 50%) ;
  • Le sable non durci peut être recyclé pour réduire la production de déchets solides et les co?ts de traitement de l'environnement.

Principe de l'impression 3D sur sable : 4 étapes de la conception au sable (automatisation complète du processus)

Le processus d'impression 3D de sable (technologie de jet de liant) est simple et hautement automatisé, sans intervention humaine complexe, et comporte les principales étapes suivantes :

  1. Conception numérique et simulationLes ingénieurs utilisent un logiciel de CAO pour construire le modèle de sable et le système de simulation de coulée 3DPTEK pour simuler le processus d'écoulement, de refroidissement et de retrait du métal liquide, afin d'optimiser le système de coulée du modèle de sable et la position de la colonne montante, de manière à éviter les défauts tels que les trous de retrait et la porosité dans les pièces coulées ;
  2. Moulage par impression couche par coucheL'imprimante dépose automatiquement du sable d'une épaisseur de 0,26 à 0,30 mm (sable de quartz / sable de chromite en option) puis, en fonction des données de découpage, pulvérise le liant sur la zone à durcir et construit la forme du sable couche par couche ;
  3. Durcissement et nettoyage du sableAprès l'impression, le moule en sable est laissé à durcir dans un environnement fermé pendant 2 à 4 heures, après quoi le sable non durci (qui peut être recyclé directement) est soufflé à l'aide d'air comprimé ;
  4. Moulage et post-traitementLe métal en fusion (aluminium, acier, alliages de cuivre, etc.) est versé dans le moule en sable, qui est ensuite refroidi, fissuré, retiré et fini - le tout sans intervention humaine dans le processus de moulage en sable.

Paramètres de l'imprimante 3D 3DPTEK Sand (applicable à différentes industries)

3DPTEK, en tant que marque leader dans l'industrie, a lancé plusieurs modèles d'imprimantes à sable, couvrant les besoins de moulage de petite à très grande taille, avec les paramètres de base suivants :

modèlesTaille d'impression (L × L × H)épaisseur de la coucheScénarios applicablesConvient pour la coulée d'alliages
3DPTEK-J1600Pro1600×1000×600mm0,26-0,30 mmMoules en sable de petite et moyenne taille (par exemple, bo?tiers de moteur, petits corps de pompe)Alliage d'aluminium, fonte
3DPTEK-J25002500×1500×800mm0,26-0,30 mmMoules en sable de taille moyenne à grande (par exemple, carters de bo?tes de vitesses, carters de turbines)Acier, alliages de cuivre
3DPTEK-J40004000×2000×1000mm0,28-0,32 mmMoules en sable surdimensionnés (par exemple, hélices de bateaux, grandes vannes)Acier inoxydable, alliages spéciaux

Points fortsTous les modèles prennent en charge les formulations personnalisées "sable + liant", et 3DPTEK dispose de plus de 30 formulations propriétaires pour répondre aux besoins des différents alliages (par exemple, moulage d'alliage d'aluminium pour un liant à faible viscosité, moulage d'acier pour un sable résistant aux températures élevées).

Cinquièmement, l'impression 3D sur sable : 4 grands scénarios d'application industrielle (avec des cas concrets)

1) Le secteur automobile : un soutien essentiel pour la transition vers l'électrification

  • Scénarios d'application :Bo?tier de moteur refroidi à l'eau pour véhicule électrique, plateau de batterie léger, moulage en sable. ;
  • Exemple : un fabricant de camions électriques commerciaux a utilisé le 3DPTEK J2500 pour imprimer un motif de sable pour le bo?tier du moteur, obtenant ainsi une conception de "canal de refroidissement intégré" qui a augmenté l'efficacité thermique du moteur de 30%, tout en réduisant le poids du bo?tier de 25% et en augmentant l'autonomie de 50 km.

2. industrie aérospatiale : moulage de haute précision de pièces complexes

  • Scénarios d'application :Aubes de turbines, chambres de combustion de moteurs aéronautiques, moulage en sable. ;
  • Avantage : la précision dimensionnelle du moule en sable atteint le niveau CT7, ce qui répond à l'exigence de "zéro erreur" pour les pièces aéronautiques, tout en évitant la mise au rebut des pales causée par les erreurs d'assemblage des noyaux en sable traditionnels.

3) Industrie des machines industrielles : composants de base pour les grands équipements

  • Scénarios d'application :Moulage en sable de grosses pompes et de bo?tiers de compresseurs. ;
  • Exemple : une entreprise de l'industrie lourde a utilisé le système 3DPTEK J4000 pour imprimer un modèle de corps de pompe en sable de 4 mètres de long. Le processus traditionnel nécessite la production de trois jeux de moules en métal (pour un co?t de plus de 300 000 yuans), l'impression 3D élimine directement le co?t des moules, et le cycle de production est ramené de quatre semaines à trois jours.

4) Industrie de l'énergie et de la marine : fabrication de pièces moulées de très grande taille

  1. Scénarios d'application :Moulage en sable d'une hélice de navire et d'une coque d'éolienne. ;
  2. Avantage : la largeur d'impression de 4 mètres du modèle J4000 permet d'imprimer de très grands moules en sable en une seule fois, ce qui élimine la nécessité de réaliser des raccords et réduit les défauts de fermeture des moules dans les pièces coulées.

Pourquoi choisir la solution d'impression 3D sur sable de 3DPTEK ? (4 compétences principales)

1. couverture de l'équipement sur l'ensemble du site, adaptée aux différentes exigences en matière de capacité

Des machines compactes de 1,6 mètre (J1600Pro) aux méga-machines de 4 mètres (J4000), pourDe la production expérimentale en petits lots à la production de masse à grande échelleLe J1600Pro est disponible pour les petites et moyennes fonderies avec une capacité de 5 à 8 moules par jour, et le J4000 est disponible pour les grandes fonderies avec une capacité de 2 à 3 moules extra-larges par jour.

2. une formule de matériaux exclusive pour garantir la qualité du moulage

3DPTEK compte plus de 30granuleFormulation exclusive pour les agents de liaisonLa conception est optimisée pour différents alliages :

  1. Coulée d'alliage d'aluminium : liant à faible viscosité, bonne perméabilité au sable, réduction de la porosité de la coulée ;
  2. Moulage en acier : liant à haute résistance, résistance à la température élevée du moule en sable (plus de 1500℃), évitant les défauts du poin?onnage au sable ;
  3. Coulée d'alliage de cuivre : liant à faible teneur en cendres pour éviter les inclusions à la surface de la coulée.

3. une assistance technique intégrée pour réduire la difficulté de la transition

Fournir un soutien complet au processus "équipement + logiciel + service" :

  1. gratuitLogiciel de simulation de coulée(Optimiser la conception du sable et réduire les co?ts liés aux essais et aux erreurs) ;
  2. Le centre de technologie de coulée interne peut aider les clients à effectuer des essais sur le sable et à déboguer le processus de coulée ;
  3. Fournir une formation à l'opérateur (instruction 1 à 1 pour assurer le fonctionnement de l'équipement dans les 3 jours).

4. un réseau mondial de service après-vente pour assurer la stabilité de la production

L'équipement a été débarqué dans plus de 20 pays d'Europe, d'Asie, du Moyen-Orient, etc. et la vitesse de réaction du service après-vente est rapide :

  1. Service national de porte à porte 24 heures sur 24 (48 heures pour les régions éloignées) ;
  2. 5 centres de service à l'étranger (Allemagne, Inde, états-Unis, etc.) pour un remplacement rapide des pièces détachées ;
  3. Entretien gratuit du matériel 2 fois par an pour prolonger la durée de vie du matériel (durée moyenne de plus de 8 ans).

Tendances futures de l'impression 3D sur sable en 2025 (3 directions à suivre)

1. l'impression AI+3D pour un moulage sans défaut

L'avenir de l'impression 3D sur sable sera intégréAI Système d'optimisation de la conception-- En entrant les paramètres de coulée (matériau, taille, exigences de performance), l'IA peut automatiquement générer la structure optimale du sable, tout en surveillant en temps réel le processus d'impression, en ajustant la quantité d'injection de liant, l'épaisseur de la couche de sable, afin d'éviter les fissures, la densité inégale et d'autres problèmes dans le modèle de sable, pour atteindre la production "zéro défaut ! ".

2. le recyclage du sable en circuit fermé avec un taux d'utilisation des matériaux de 98%

exploiter (une ressource)Système de récupération automatique du sableEn outre, le sable non traité et le vieux sable seront criblés, décontaminés et recyclés, et le taux d'utilisation des matériaux passera de 90% actuellement à plus de 98%, ce qui permettra de réduire encore le co?t des matériaux et de se conformer aux exigences de la politique "Double Carbone".

3) L'impression de matériaux composites multiples pour élargir les limites des applications

L'imprimante 3D à sable du futur permettra l'impression de composites "sable + poudre métallique", c'est-à-dire l'impression de revêtements métalliques dans des zones clés du modèle de sable (par exemple, les portes) afin d'améliorer la résistance à la température élevée du modèle de sable et de s'adapter à l'évolution de l'environnement et de l'économie.Acier à ultra-haute résistance, alliages de titaneMoulage d'alliages réfractaires, applications en expansion dans l'aérospatiale et les équipements haut de gamme.

VIII. conclusion : l'impression 3D de sable n'est pas une "technologie optionnelle" mais un "outil de transformation indispensable".

Dans l'industrie de la fonderie, de plus en plus concurrentielle, "réponse rapide, structure complexe, réduction des co?ts verts" est devenue une compétence essentielle - l'impression 3D sur sable en réduisant le temps de cycle de 80%, en réalisant des conceptions difficiles et en réduisant les co?ts à long terme de 40%. et aider les fonderies à dépasser les contraintes des processus traditionnels.

3DPTEK, en tant que leader de l'impression 3D sur sable, fournit des solutions personnalisées pour les fonderies de différentes tailles grace à de multiples modèles d'équipement, des formulations de matériaux exclusives et un support technique intégré. Que ce soit dans les secteurs de l'automobile, de l'aérospatiale, des machines industrielles ou de l'énergie, choisir l'impression 3D sur sable, c'est choisir le double avantage de la "réduction des co?ts et de l'efficacité + leadership technologique", qui est également le principal moyen pour les fonderies de survivre en 2025 et au-delà.

砂型 3D 打印技術:2025 年重塑金屬鑄造行業,縮短 80% 周期 + 降本方案解析最先出現在三帝科技股份有限公司

]]>
Imprimantes 3D SLS industrielles : une solution révolutionnaire pour la fabrication de précision de pièces complexes, analyse technologique et applications industrielles 2025 http://www.ahjfzs.com/fr/blogs/industrial-sls-3d-printer-precision-manufacturing-for-complex-parts/ Wed, 20 Aug 2025 03:41:18 +0000 http://www.ahjfzs.com/?p=2355 Découvrez les principes, les avantages, les matériaux et les applications des imprimantes 3D SLS industrielles ! Expliquez comment elles s'affranchissent du processus traditionnel pour fabriquer avec précision des pièces complexes, raccourcir le temps de cycle de 70% et réduire le co?t de 40% d'ici 2025, et comment le dispositif 3DPTEK est adapté aux scénarios aérospatial/automobile/médical/de coulée.

工業級 SLS 3D 打印機:復雜零件精密制造的革新方案,2025 年技術解析與行業應用最先出現在三帝科技股份有限公司

]]>
Dans la vague de transformation et de mise à niveau de l'industrie manufacturière moderne, lesHaute précision, haute durabilité, pièces structurelles complexesLa demande continue d'augmenter. Les méthodes de fabrication traditionnelles sont limitées de manière répétée pour la production de petites séries, le prototypage rapide et l'usinage de géométries complexes, ainsi que pour la production de pièces de rechange.Imprimante 3D SLS de qualité industrielleLa technologie de frittage sélectif par laser (Selective Laser Sintering) est devenue l'équipement de base pour éliminer ces goulets d'étranglement. Cet article analyse en détail le principe, les avantages, les matériaux applicables, les applications industrielles et les tendances futures de l'impression 3D SLS de qualité industrielle, afin de fournir aux entreprises manufacturières des références en matière de sélection technologique et d'optimisation de la production.

I. Qu'est-ce qu'une imprimante 3D SLS de qualité industrielle ? Définition de base et caractéristiques techniques

Les imprimantes 3D SLS de qualité industrielle utilisent un laser très puissant pourNylon, polymères composites, sables/cires de coulée spéciauxIl s'agit d'un équipement de qualité industrielle pour la fusion sélective de matériaux en poudre et d'autres matériaux afin de construire des pièces solides en 3D couche par couche. Ses principales caractéristiques techniques sont très différentes de celles des équipements SLS de bureau :

dimension de comparaisonImprimante 3D SLS de qualité industrielleAppareils SLS de bureau
Espace de formationGrand (certains modèles jusqu'à 1000 mm)peu
efficacité de la productionélevée, favorise la production de masseFaible taux d'impression, essentiellement en une seule pièce
Qualité des piècesStable et conforme aux normes de production de massePrécision moindre, adaptée au prototypage
Compatibilité des matériauxHiro (plastiques techniques, sable de coulée, cire)étroite (principalement poudre de nylon de base)

En outre, l'impression SLS de qualité industrielle ne nécessite aucune structure de support (la poudre non frittée soutient naturellement la pièce), ce qui permet de réaliser facilement des choses impossibles avec les procédés traditionnels.Canaux internes complexes, structure en treillis léger, composants actifsMoulure tout-en-un.

4 avantages essentiels pour les fabricants qui choisissent l'impression 3D SLS de qualité industrielle

Dans les secteurs de l'aérospatiale, de l'automobile, de la médecine, de la fonderie et d'autres domaines, la technologie SLS de qualité industrielle est devenue la clé de l'amélioration de la productivité et de l'innovation ; les principaux avantages sont décrits dans les quatre points suivants :

1. pas de limite supérieure à la liberté de conception, ce qui permet de s'affranchir des limites traditionnelles du processus

Aucune structure de support n'est nécessaire, ce qui permet aux ingénieurs de concevoir des produits de qualité.Cavités internes complexes, pièces mobiles intégrées, construction légère à topologie optimisée-- tels que les pièces structurelles creuses dans l'aérospatiale et les composants complexes dans les moteurs automobiles, sont difficiles à réaliser avec les procédés traditionnels tels que l'usinage CNC et le moulage par injection.

2. solidité des pièces conformes aux normes, directement utilisées dans des scénarios de production de masse

Les pièces imprimées par SLS ne sont pas des "prototypes", mais des pièces finies dotées d'une fonctionnalité utile. Couramment utilisées, les pièces imprimées parPA12 (nylon 12), PA11 (nylon 11), nylon renforcé de fibres de verreCes matériaux, dont les propriétés mécaniques sont proches de celles des pièces moulées par injection et qui présentent une excellente résistance aux produits chimiques et aux chocs, peuvent être directement utilisés dans des scénarios de production de masse tels que les pièces intérieures d'automobiles et les outils médico-chirurgicaux.

3. délai de production réduit 70%, réponse rapide à la demande du marché

Du modèle CAO à la pièce finie, l'impression SLS de qualité industrielle est tout ce qu'il faut.3-7 joursC'est beaucoup plus rapide que la fabrication traditionnelle de moules, qui prend généralement des semaines. Pour la validation des prototypes par l'équipe de R&D, la production personnalisée de petits lots et le réapprovisionnement d'urgence en pièces détachées, cet avantage permet de raccourcir considérablement le délai de mise sur le marché et de saisir l'opportunité du marché.

4. soutenir l'intensification et la transition de la production afin de réduire les co?ts

Les dispositifs SLS de qualité industrielle peuvent imbriquer des dizaines, voire des centaines de pièces en un seul tirage, ce qui les rend idéaux pourProduction de masse en petites sériesIl peut également être utilisé comme outil de "fabrication intermédiaire", en utilisant le SLS pour produire rapidement des pièces transitoires avant de s'engager dans des moules d'injection co?teux, en évitant le risque d'investissement dans les moules et en réduisant les co?ts de production initiaux.

Matériaux de base pour l'impression 3D SLS de qualité industrielle : plus que le nylon, les matériaux pour les applications de moulage deviennent un nouveau point chaud

Lorsqu'il s'agit de matériaux SLS, le nylon est la première chose qui vient à l'esprit, mais les équipements de qualité industrielle sont devenus compatibles avec plusieurs matériaux et les matériaux spécialisés, en particulier dans le secteur de la fonderie, sont à l'origine de la transformation numérique des processus de fonderie traditionnels :

1) Sable de fonderie : production directe de moules et de noyaux pour la coulée des métaux

en combinantSable de quartz / Sable céramiqueMélangée à un liant spécial pour le frittage laser, l'imprimante SLS de qualité industrielle peut imprimer directement des modèles de sable et des noyaux pour le moulage des métaux :

  • Convient pour les corps de pompe, les corps de turbine, les blocs de moteur automobile, etc.Moulages complexes à cavité interne. ;
  • élimine le besoin de moules traditionnels en bois/métal, réduisant ainsi les co?ts d'outillage et les délais de mise en ?uvre ;
  • Le moule en sable présente une grande précision dimensionnelle (erreur ≤0,1 mm) et une surface lisse, ce qui améliore le taux de rendement de la coulée.

2) Cire de coulée : production efficace de moules en cire pour le moulage à la cire perdue

Les appareils SLS de qualité industrielle peuvent imprimerCire de coulée à faible teneur en cendresIl est utilisé pour le moulage à la cire perdue d'aubes de turbines d'avion, de bijoux et de matériel de précision, par opposition à l'usinage CNC traditionnel de moules en cire :

  • Faible rugosité de surface (Ra≤1,6μm) pour répondre aux besoins de moulage de pièces de précision ;
  • Teneur en cendres <0,1%, pas de résidus lors du déparaffinage de la coulée, évite les défauts de coulée ;
  • Temps de cycle de production réduit 50%, adapté à la production rapide de petites quantités de moules en cire de précision.

Recommandations relatives à l'équipement de moulage industriel SLS de 3DPTEK

En tant que marque leader dans l'industrie, 3DPTEK propose des modèles spécialisés pour les scénarios de fonderie, adaptés aux besoins de la production industrielle :

  • Imprimante 3D SLS SandLa longueur de moulage peut atteindre 1000 mm, ce qui permet la production en masse de moules en sable de coulée de grande taille et convient à la coulée de grandes pièces mécaniques ;
  • Imprimante 3D de modèles en cire SLSImpression à haute résolution (épaisseur de couche de 0,08 mm), compatible avec les formules de cire de coulée standard pour une intégration transparente dans les processus traditionnels de coulée à la cire perdue.

L'impression 3D SLS de qualité industrielle : de la conception au produit fini en 5 étapes

Le processus d'impression SLS de qualité industrielle est hautement automatisé, avec un processus de base en 5 étapes qui élimine le besoin d'une intervention manuelle complexe :

  1. Conception 3D et prétraitementLa conception de la pièce est réalisée dans un logiciel de CAO, la structure est optimisée par un logiciel spécial (par exemple, augmentation de l'épaisseur de la paroi, disposition de l'imbrication) et un fichier STL est généré, qui est reconnu par l'appareil SLS ;
  2. Pose de poudreL'équipement dépose automatiquement le matériau en poudre de manière uniforme sur la plate-forme de moulage, l'épaisseur de la couche étant contr?lée à un niveau de 0,5 à 0,5 mm.0,08-0,35 mm(réglable avec précision) ;
  3. Frittage sélectif par laserLe balayage laser à haute puissance basé sur la trajectoire de la section transversale de la pièce fusionne et solidifie les particules de poudre pour former une structure de pièce monocouche ;
  4. s'empiler couche par coucheL'étape du frittage laser est répétée jusqu'à ce que la pièce soit entièrement formée ;
  5. Refroidissement et poudrageLes pièces sont refroidies lentement dans un environnement fermé (pour éviter les déformations) et la poudre non frittée est éliminée après refroidissement (recyclable, avec un taux d'utilisation des matériaux supérieur à 90%).

V. Applications industrielles de l'imprimante 3D SLS : scénarios types dans 4 domaines majeurs

Avec les avantages d'une grande précision, d'une grande compatibilité et d'une production rapide, la technologie SLS de qualité industrielle s'est imposée dans de nombreuses industries clés, et les scénarios d'application typiques sont les suivants :

1. l'aérospatiale : allier légèreté et haute fiabilité

  • donner naissance à un enfantConduits légers, composants de traitement de l'airLa structure en treillis est optimisée pour réduire le poids de la pièce 30%-50% tout en maintenant sa résistance ;
  • Fabrication de composants structurels complexes de satellites, de supports intérieurs d'avions sans assemblage, ce qui réduit le risque de défaillance.

2. automobile : prototypage rapide combiné à une production en faible volume

  • Phase de R&D : impression rapideBo?tier, support, prototype de tableau de bordLa conception est validée en 3 jours, ce qui raccourcit le cycle de développement ;
  • Phase de production en série : production en petits lots de pièces personnalisées pour l'intérieur des véhicules et de pièces de rechange pour l'entretien, ce qui évite d'investir dans des moules et réduit les co?ts.

3. domaine médical : personnalisation et sécurité à la fois

  • personnalisationModèles anatomiques spécifiques aux patients(par exemple, les modèles de planification chirurgicale orthopédique) pour aider les médecins à élaborer des plans chirurgicaux précis ;
  • Fabrication d'instruments orthopédiques et d'outils chirurgicaux personnalisés, avec des matériaux répondant aux normes de qualité médicale et de biocompatibilité.

4) Secteur de la fonderie : promouvoir la transformation numérique des processus traditionnels

  • Grandes pièces métalliques moulées : impression directe de moules en sable / de noyaux pour des pièces complexes telles que des corps de pompe et des carters de turbine ;
  • Moulage de pièces de précision : impression de moules en cire à faible teneur en cendres pour le moulage à la cire perdue de pièces de précision telles que les pales de turbines d'avion, les bijoux, etc.

étude de cas : un fournisseur automobile européen utilise l'impression 3D SLS pour réduire ses co?ts de 40% et augmenter son efficacité de 70%

Un équipementier automobile européen avait besoin d'un gabarit personnalisé pour une tache de production à court terme. La solution traditionnelle consistait à recourir à l'usinage CNC, ce qui nécessitait un délai de 10 jours et des co?ts d'équipement élevés.Imprimante 3D SLS de qualité industrielle 3DPTEKAprès :

  • Sélection du matériau : la poudre PA12 à haute résistance est utilisée, la résistance de la pièce répond aux exigences de l'utilisation de l'outillage ;
  • Cycle de production : de la conception au produit fini, il ne faut que 3 jours, soit 70% de moins que l'usinage CNC ;
  • Contr?le des co?ts : pas besoin de moules ni d'usinage complexe, ce qui réduit les co?ts globaux de 40% ;
  • Résultat : achèvement réussi d'une courte série de production et vérification de la faisabilité de la technologie SLS dans la fabrication d'outils.

Imprimante 3D SLS de qualité industrielle 3DPTEK : pourquoi est-elle le choix préféré de l'industrie ?

Parmi les nombreuses marques d'équipements SLS industriels, 3DPTEK est devenu un choix populaire pour les entreprises de fabrication grace à son concept de conception "orienté vers la production de masse", qui se reflète dans ses compétences de base en 4 points :

  1. Grande taille et grande vitesse à la foisCertains modèles ont une longueur de moulage allant jusqu'à 1 000 mm, ce qui permet de produire des pièces surdimensionnées. Parallèlement, la vitesse d'impression est supérieure de 20% à la moyenne de l'industrie, ce qui améliore l'efficacité de la production de masse ;
  2. Haute compatibilité multimatériauxIl peut être adapté à une large gamme de matériaux tels que les plastiques techniques, le sable de coulée, la cire de coulée, etc., de sorte qu'une seule machine peut répondre aux besoins de plusieurs scénarios ;
  3. Solutions complètesLa Commission européenne : Elle propose une large gamme de produits allant des périphériques d'impression aux systèmes de gestion de l'information et de la communication.Logiciel de simulation de coulée, équipement de post-traitementLa solution tout-en-un élimine le besoin d'outils tiers supplémentaires ;
  4. Support technique mondialService après-vente : service complet couvrant l'installation de l'équipement, la formation à l'utilisation et la maintenance après-vente afin d'assurer un fonctionnement stable de la ligne de production.

VIII Tendances futures de l'impression 3D SLS industrielle en 2025 : 3 directions d'intérêt

Avec les progrès de la science des matériaux et de la technologie d'automatisation, l'impression SLS industrielle évoluera vers une plus grande efficacité, une application plus large et une meilleure qualité, et les trois grandes tendances sont évidentes pour l'avenir :

  1. Vitesse d'impression accrue sans sacrifier la précisionLa vitesse d'impression sera augmentée de plus de 50% grace à l'optimisation de la puissance du laser et à la technologie de frittage multi-laser simultané, tout en maintenant une précision élevée de 0,08 mm ;
  2. Extension des catégories de matériauxLes matériaux composites à haute température (tels que les poudres à base de PEEK) et les poudres composites à base de métal seront progressivement introduits, ce qui élargira l'application de la technique SLS dans les scénarios à haute température et à haute résistance ;
  3. Production intelligente en boucle ferméeLe système intégré de surveillance en temps réel contr?le le processus d'impression grace à des algorithmes d'intelligence artificielle et ajuste automatiquement les paramètres du laser afin d'obtenir une production de masse "sans défaut" et de réduire les taux de rebut.

IX. Conclusion : l'impression 3D SLS de qualité industrielle, plus qu'une "imprimante", un outil pour l'innovation dans la fabrication

Les imprimantes 3D SLS de qualité industrielle ne sont plus seulement des "machines de prototypage", mais des machines "conception-production-application" capables de relier l'ensemble du processus de conception-production-application.Solutions de niveau de productionLa technologie SLS peut être utilisée dans l'industrie aérospatiale pour l'allègement et les applications automobiles. Qu'il s'agisse d'exigences de légèreté dans l'aérospatiale, de temps de réponse rapides dans l'industrie automobile, de personnalisation dans le domaine médical ou de numérisation dans l'industrie de la fonderie, la technologie SLS de qualité industrielle offre des solutions efficaces et rentables.

Pour les entreprises de fabrication, le choix du bon équipement SLS de qualité industrielle, tel que les modèles de moulage sable/cire de 3DPTEK, permet non seulement d'améliorer la productivité, mais aussi de dépasser les limites des processus traditionnels et de saisir le terrain propice à l'innovation - ce qui est la valeur fondamentale de l'impression 3D SLS de qualité industrielle dans l'avenir de la fabrication.

工業級 SLS 3D 打印機:復雜零件精密制造的革新方案,2025 年技術解析與行業應用最先出現在三帝科技股份有限公司。

]]>
主站蜘蛛池模板: 海伦市| 溧水县| 汽车| 长武县| 龙川县| 丰宁| 北安市| 修文县| 五台县| 贵溪市| 临高县| 哈密市| 托克托县| 通城县| 都匀市| 尉犁县| 呼和浩特市| 东丰县| 博罗县| 武宣县| 云龙县| 隆德县| 汽车| 左云县| 化德县| 阿鲁科尔沁旗| 北海市| 资阳市| 贵州省| 理塘县| 美姑县| 北碚区| 慈利县| 漳州市| 嵊州市| 苍南县| 沂源县| 抚远县| 南皮县| 聂拉木县| 镇远县|